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Abstract 
   We present that a map \g from a nonempty set X into itself where 

each g is in a group G ; namely, is called an action of G  on X . We 
next present the Orbit-Stabilizer Theorem: If G acts on X , x X then 
the order of orbit of xis equal to the index of stabilizer of x in G . Last, 
we show that if an infinite group has a subgroup of finite index then it also 
has a normal infinite subgroup of finite index, which is the consequence of 
this theorem. 

1. Basic Definitions and Examples 
We begin by defining the group concept. Now for proper understanding 

of this paper we need to explain some terminologies used. Moreover, there are 
some basic definitions, examples, and Lagrange's Theorem (no proof), that 
use to back our points. 
Definition 1.1.A semigroup is a non-empty set { , , , , }X x y z   together 
with a binary operation which satisfies the following two conditions 
(axioms): 
(i) it is closed, or well-defined: for all ,x y X ,  

.x y X  
(ii) it is associative: for all x, y, z ∈X, 

( ) ( )x y z x y z    . 
For example, the set of all integers is a semigroup under usual addition. 

Definition 1.2. A group ( , )G  is a semigroup, which satisfies the following 
extra conditions (axioms): 
(iii) G contains a unique element e which satisfies, for all g ∈G, 

e g g e g    
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(iv) for each g ∈G, there exists a unique g'∈G satisfying 
' 'g g g g e   . 

The element e is called the neutral element of the group G or the identity for 
G.  

For example, the set of all integers is a group under usual addition with 
neutral element 0.  
Definition 1.3. Two groups G and H are called equal, G = H, if and only if 
their underlying sets are equal and they have the same operation. 

The order of a group G is the number (or cardinality) of elements in the 
underlying set of G, it is denoted by o(G). 

For example, { 1,1}G    is a group under usual multiplication, with
( ) 2.o G   

Definition 1.4. If two numbers a and bhave the property that their difference 
a b is integrally divisible by a number m(i.e., /a b m is an integer), then aand bare said to be congruent modulo m . The number m  is called the 
modulus, and the statement "a is congruent to b (modulo m)" is written 
mathematically as  

a b (mod m). 
This notation was first introduced by C.F. Gauss in 1801 in his famous 

number theory text called ‘Disquisitiones arithmeticae’.  Next we define 
~a b  if a b (mod m). Then this relation, ~, is an equivalence relation. Also 

define [ ] { |a b a b  Z (mod m)}. Let mZ denote the set{[0],[1], ,[ 1]}m  .  
For example, \{[0]}mZ  is a group under multiplicative modulo m  

where m  is prime. 
Definition 1.5. If X is a set and XS  denotes the collection of all permutations 
on X (that is, bijections of X onto itself), then this collection forms a group 
under the operation of composition, called the symmetric group on X. If X is 
finite with n elements, we usually take X to be the set {1, 2, , }n and write            

nS for XS , ( ) !.no S n  
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For example, let {1, 2,3}.X  Then we write all permutations from X onto 
itself in ray forms as follows: 

1 2 3 1 2 3 1 2 3, , ,1 2 3 1 3 2 2 1 3
1 2 3 1 2 3 1 2 3, , .2 3 1 3 1 2 3 2 1

               
                 

We also write these ray forms in cycle notations as follows: 
(1)(2)(3), (23), (12), (123), (132), (13).  

We see that (1)(2)(3) is the identity mapping; to simply, denote it by  
(1).(12), (13) and (23) are called transpositions. Note that every permutations 
in nS  is the product of transpositions. For instance, (123) (13)(12),  and 
(123)(456) (13)(12)(46)(45).  

If the number of transpositions of a permutation is even (odd), then it is 
called even (odd) permutation.  

So 3 {(1),(12),(13),(23),(123),(132)}S   is a group under the composition 
of permutations. 
Definition 1.6. The symmetries of a regular polygon with n sides are the 
clockwise rotations about the centre are now by 2π/n, and ‘reflection’ or 
‘turning over’ is as before. The set of all symmetries form a group under the 
composition of symmetries.  This group is denoted by 2nD , called dihedral. 
We have 2 1 1

2 , : , .n
nD a b a b e b ab a      

For example, 6D is the group of symmetries of the equilateral triangle, it 
has order 6, 3 2 1 1 2 2

6 , : , { , , , , , ,}D a b a b e b ab a e a a b ab a b      . 
For example, the alternating group nA which is the group contained in 

nS of all even permutations; 3 {(1), (123), (132)}.A   
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Most groups contain a number of smaller groups using the same 
operation, we shall, consider these now. 
Definition 1.7. A subgroup H of a group G is a non-empty subset of G which 
forms a group under the operation of G. 

We write H ≤ G when H is a subgroup of G. For example, if R is the 
group of all nonzero real numbers, then  the group of all nonzero rational 
numbers, Q ,  is a subgroup of R , that is,  Q R . 
Definition 1.8 (i) A subgroup J of a group G is called proper if J  G, this is 
denoted by J <G. 
(ii) The singleton set {e} forms a subgroup of all groups, it is called the 

neutral subgroup and is denoted by e . 
(iii)  A subgroup H of a group G is called maximal in G if it is aproper 

subgroup of G, and whenever a subgroup J exists satisfying H ≤ J ≤ G, 
then either J = H or J = G, so no subgroup lies strictly between H and G. 
The neutral subgroup e is sometimes called the identity, trivial, or 
unit, subgroup. 

(iv)   A subset ܵ of elements of a group G with the property that every 
element of G can be written as a finite product of elements of ܵ and their 
inverses is called a set of generators of G, written byG S  and say 
G is generated by S or S generates G. 

(v)  A group G is called cyclic if there is an element ܽin G such that
{ : }nG a n Z . Such an element a is called a generator of G, is written 

by .G a  
Note that it is a subgroup of G. 

(vi)  If H ≤ G and g ∈G, then g−1Hg is called a conjugate subgroup of H. 
Note thatg−1Hg ≤ G, for anyg−1hg, g−1h'gwhere h, h' are in H, we have 

(g−1hg) (g−1h'g) = g−1hh'g, 
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and 
(g−1hg) −1= g−1h−1g; 

hence g−1Hg ≤ G.  
 
Definition 1.9. For H ≤ G and g ∈G, the set gH= {gh : h ∈H} is called a left 
coset of H in G, and the set Hg is called a right coset of H in G. 
Definition 1.10. Let H ≤ G. The number (cardinality) of left cosets of H in G 
is called the index of H in G, it is denoted by [G: H]. 

Note that this equals the number of right cosets of H in G. 
Example1.11. Let 3 {(1),(12),(13),(23),(123),(132)}G S  and {(1), (12)}H 
Then H <G. The right cosets of Hare 

(12) ,
(13) {(13), (132)},
(23) {(23), (123)}

H H
H
H





 

and so[G : H] = 3. 
Definition 1.12. A group G is called simple if it contains no proper non-
neutral normal subgroup. 

For example, H in above example is simple. 
Theorem 1.13(Lagrange’s Theorem)If H ≤ G then o(G)= o(H)[G : H].  
Definition 1.14. If H ≤ G, the core of H in G, core(H), is defined by 

core(H) 1
g G g Hg
 . 

Proposition 1.15.  Let G be a group and H ≤ G. Then: 
(i) core (H) is a normal subgroup of G. 
(ii) core (H) is the largest normal subgroup of G contained in H. 

Proof. (i) For any ,x ycore(H), let 1x g hg and 1
1y g h g for all 

1, ,g G h h H  . Then  
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1 1( )( )xy g hg g h g g hh g     
for all ;g G so, xycore(H). Next, we have 1 1 1x g h g   for all g G , and 
so 1x   core(H). Hence core (H)≤ G. Now we must show that core (H) 
satisfies normality. For any 1 ,g G  

1 1 1 1
1 1 1 1 1 1( )g xg g g hgg gg hgg      

for all ;g G so, 1
1 1g xg core(H).Hence core(H) G . 

(ii) If N is any normal subgroup of G contained in H then we have 
1 1N g Ng g Hg   for all g G  so that  

1
g GN g Hg
 . 

 

2. Actions  
Given a set X , we introduce new collections of maps that transform 

into itself and which are governed by a group G ; that is, for each g G we 
define a map \ :g X X , and map composition corresponds a group 
operation. The map \g is a permutation of and it is called an action of G
on X . 

We begin by considering an example. Let G  be the group 7 \{[0]}Z   
and let {[1],[2[,[3],[4],[5],[6]}.X   Consider the right multiplication of an 
element xof X by an element g of G , that is, x g . Later we shall write this 
as \ .x g We have  

\ ,x e x  
that is, the right multiplication of element of X  by e does not alter X . Also, 
by associativity we have  

( ) ( ) ,x gh x g h     

X

X
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where , ,g h G that is, applying gh to x is the same as first applying g to x, 
and then applying hto the result. We call this procedure an action of Gon X , 
see Definition 2.1 below. Further, as [4] G  we have  
[1] [4] [4], [ 2] [4] [1], [3] [4] [5], [4] [4] [2], [5] [4] [6], [6] [4] [3],           
that is, the set X has been permuted by this procedure. Also,  

[1] ([4][3]) [1] [5] [5],    and ([1] [4]) [3] [4] [3] [5],     gives 
[1] ([4][3]) ([1] [4]) [3]    .  

This example above gives the following definition: 
Definition 2.1.Given a nonempty set X and a group G , we say G acts on 
X if, for each g G , there exists a map \ : ,g X X and these maps satisfy  

 (i) \
ii \ ( ) ( \ ) \

x e x
x gh x g h


                                                        (2.1) 

for all x X and , .g h G We call the map \g an instance of the action of the 
group G on the set X . 

More formally, we can rewrite Definition 2.1, as follows: The function \ 
is a map from X G  to X which satisfies the two parts of (2.1), is called an 
action of G on X . The function defined above is a right action. Elements of 
group are denoted by the letters , ,g h   and elements of set are denoted by 

, , .x y z  We first prove the following basic result.  
Theorem 2.2. Let G  be a group and g G . Then the map \ :g X X is a 
permutation of the set X . 
Proof. Suppose ,x y X and \ \ .x g y g Then by (2.1) we have  
 

1 1 1 1\ \ ( ) ( \ ) \ ( \ ) \ \ ( )x x e x gg x g g y g g y gg y         , 
 
that is, the map \g is injective. Secondly, suppose z X  then for g G  

1 1\ \ ( ) ( \ ) \ ,z z e z g g z g g     
that is, 1\z g  is preimage of z under the man \ .g  Hence this map is also 
surjective, and so it is a permutation of .X  
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Examples 2.3. (a) Let G be a group and let X be the underlying set of G . 
The group G  acts on X  by right multiplication if we define, for g G and  
x X ,  

\ .x g xg  
 Then clearly satisfies the condition (2.1) and the corresponding action 
is called the natural action on G . 
(b) Let V be a vector space defined over the field F  and F the 

multiplicative group of F . For each a F  define \ :a V V by  
\ .v a va  

Then the standard vector space axioms give 
\1 1v v v  and \ ( ) ( ) ( ) ( \ ) \v ab v ab va b v a b    

 where *;b F hence the multiplicative group  *F  of F acts on .V  
(c) Let G e  and X be an arbitrary set. Then G acts on X  if we define \x e  

equal to x for all .x X  
(d) Let nG S and let {1, , },X n  then if we define \x x  for G  and 

.x X Then it is an action of G on X , called the permutation action.   
There are two important entities concerning an action, namely, orbits 

and stabilizers. We first introduce orbits. Let the group G act on the set  X . 
Define a relation ~  on X  by ~x y  if \x g y for some g G . 
Lemma 2.4. The relation ~ defined above is an equivalence relation. 
Proof. Since \ , ~ .x e x x x  Suppose ~ ,x y then \x g y for some .g G
We have  

1 1 1\ ( \ ) \ ( ) \ ,y g x g g x gg x e x       
and so ~ .y x  Finally, suppose ~x yand ~y z so that \x g y  and \y h z  
for some , .g h G Then  

\ ( ) ( \ ) \ \ ,x gh x g h y h z    
that is, ~ .x z  
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Definition 2.5. An equivalence class of the equivalence relation ~ given in 
Lemma 2.4 above is called an orbit of the action of G on .X The orbit 
containing the element x X is called the orbit of ,x  and it is denoted by 
O { }G x .  

An action of G on X is called transitive if there is only one orbit, that 
is, X itself, otherwise it is called intransitive. 

We introduce the stabilizer, which is second new entity. 
Definition 2.6. Given a group G acting on a set  X , and x X , the subset of 
G ,  

{ : \ },g G x g x   
is called the stabilizer of xin G ; it is denoted by ( )Gstab x . 

The stabilizer of xis the elements of G  whose associated maps do not 
move x.  
Example 2.7. Let 3 {(1), (12), (13), (23), (123), (132)}G S   and {1, 2, 3}X  .Then  

O {1} { : 1 ~ }
{ : 1 \ , }
{1, 2,3}.

G y X y
y X g y g G

 
   


 

Also, we have O {2} O {3} .G G X  Next,  
(1) { :1\ 1}

{(1), (23)},
Gstab g G g  

  

(2) {(1), (13)}Gstab  and (3) {(1), (12)}.Gstab   
Lemma 2.8. Let G be a group which acts on a set .X  Then ( )Gstab x G for 
x X . 
Proof.  By definition of an action of G on X , \ ,x e x ( ).Ge stab x  If 

, ( ),Gx y stab x  then \x g x  and \ .x h x Again, we have  
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1 1 1\ ( ) ( \ ) \ ( \ ) \x gh x g h x h h x     , 
so, 1 ( )Ggh stab x  .  

By Example 2.7and Lagrange's theorem we have  
( {1}) ( ) / ( (1)) [ : (1)],
( {2}) ( ) / ( (2)) [ : (2)],
( {3}) ( ) / ( (3)) [ : (3)].

G G G
G G G
G G G

o O o G o stab G stab
o O o G o stab G stab
o O o G o stab G stab

 
 
 

 

This result forces to a general result, namely, the Orbit-Stabilizer 
Theorem.  
Theorem 2.9. (Orbit-Stabilizer Theorem) If G acts on a set , ,X x X and 

{ }GO x is the orbit of x , then ( { }) [ : ( )].G Go O x G stab x  
Proof. By Lemma 2.8, ( )Gstab x is a subgroup of G . We define a map 
from { }GO x  to the set of right cosets of ( )Gstab x  in G by 

( \ ) ( ( )) ,Gx g stab x g   
where .g G We must show that this map is a bijection. First we show that 
this map is well-defined.  Suppose \ \ .x g x h Then  

1 1 1\ ( ) ( \ ) \ ( \ ) \x gh x g h x h h x     , 
that is, 1 ( ).Ggh stab x   Hence    ( ) ( ) ,G Gstab x g stab x h  as required. 
Second, we show that this map is injective. Suppose    ( ) ( ) ,G Gstab x g stab x h and so 1 ( ).Ggh stab x   Hence  

1 1\ ( \ ) \ \ ( ) \x h x gh h x gh h x g    , 
that is,  is injective. Last, we must show that  is surjective. For any  ( )Gstab x g , g G  then there exists an element \ { }Gx g O x such that 

 ( \ ) ( )Gx g stab x g  , 
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that is,  is surjective. The theorem now follows. 
3. Applications  

Now we calculate the order of the product of two subgroups of a group 
by using the Orbit-Stabilizer Theorem. Note that H  and J  are both non-
normal subgroups of G , then HJ is not a subgroup of G , see the following 
example. 
Example 3.1. Let 3G S ,  {(1), (12)}H   and {(1), (13)}.J   Then H  and 
J  are subgroups of G but {(1), (12), (13), (132)}HJ  is not a subgroup of 
G , see the following table.  

∙ (1) (12) (13) (132) 
(1) (1) (12) (13) (132) 

(12) (12) (1) (132) (13) 
(13) (13) (123) (1) (23) 

(132) (132) (23) (12) (123) 
But if either H  or J  is a normal subgroup of G , HJ is a subgroup of G , 
see the following theorem. 
Theorem 3.2. (a) If either H  or J  is a normal subgroup of G , then HJ is a 
subgroup of G  and .HJ JH  
(b) If both H  and J  are normal subgroups of G , then HJ is a normal 
subgroup of G . 
Proof.(a) Clearly HJ is a nonempty subset of G .  Suppose 

, , 1, 2i ih H j J i   and  H G  (the proof is similar if J G ). Since H G
, 1

1 2h h H  and 1 ,j J 1 1
1 1 2 1( ) .j h h j H    Let 1 1

1 1 2 1( )j h h j h    for some 
.h H  Hence  

1 1 1 1 1
1 1 2 2 1 1 2 1 1 2 1 2( )h j h j j h h j j j hj j HJ       , 

that is, HJ is a subgroup of G . Now we show that .HJ JH  For any 
,h H j J  , we have 
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1hj jj hj . 
H G and above equation imply that .HJ JH  
(b) By (a) we only need to check normality. If ,g G h H  and j J , we 

have 1 1 1g hjg g hg g jg HJ    , 
by hypothesis, the result follows. 
Theorem 3.3. If G is a finite group and ,H J  are subgroups of G , then  

( ) ( ) ( ) ( )o HJ o H J o H o J . 
Proof.  We define an action. Let { : },X Hg g G   the set of right cosets of 
H in G . The subgroup J acts on X by right multiplication if we set  

\Hg j Hgj  
for .j J  This is an action since  

\Hg e Hge Hg   
and 

1 2 1 2 1 2\ ( \ ) \Hg j j Hgj j Hg j j   
for 1 2, .j j J  The orbit of { }JO H of H is { \ : }H j j J , this equals .HJ  
Note that HJ is a disjoint union of right cosets of H , and the orbit of H
under this action is the union of those cosets of H  we can get to starting with 
H itself and applying elements .j J  Hence 

( ) ( ) ( { }).Jo HJ o H o O H   
Further, the stabilizer of H , ( ),Jstab H equals { : }j J Hj H  , and so 

( ) .Jstab H H J   Hence, using the equation for ( )o H J above, the Orbit-
Stabilizer Theorem gives  

( ) ( )( { }) [ : ( )]( ) ( )J J
o HJ o Jo O H J stab Ho H o H J  


. 
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Example 3.4. Suppose 3 2 1 1
6 , : , ,G D a b a b e b ab a H b G        and 

.J ab G   Then ( ) ( ) 2, { },o H o J H J e   and so ( ) 4o HJ   by 
Theorem 3.3. Clearly, HJ is not a subgroup of G as 4 /| 6 . Also neither  H
nor J is normal, since 1a ba ab  is not in H and 1 2 ,a aba a b  is not in .J
But it is union of two cosets. For as   

2 2HJ He Hab H Hba H Ha     . 
Note that we also have .HJ eJ bJ J bJ    

We have shown that (Theorem 2.2) that an action of a group G on a set 
X is a collection of permutations of X ; that is, the action provides a map 
from G to .XS Now we shall consider this map. 
Definition 3.5. Let the group G act on the set .X The map : XG S  given by 

\g g   
for all g G , is called the permutation representation of G for this action. 
Lemma 3.6. The map given by Definition 3.5 is a homomorphism. 
Proof. For all ,g h G and ,x X we have by the definition of action of the 
group, 

\ ( ) ( \ ) \ (\ \ ).x gh x g h x g h   
Again, by the definition of composition of functions, we have \ \ \gh g h  
and hence 

( ) \ \ \ ( )( )gh gh g h g h     , 
as the required result. 

This leads to the following result: 
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Theorem 3.7. Let G act on X with permutation representation  as defined 
above. Then  

ker ( )


 G
x X

stab x . 
Proof. As is a homomorphism, its kernel is the set of those g G for which 
\g is the identity permutation in XS , that is, \ x g x for all x X . But 

( )Gstab x is the set of those g G for which \ x g x , hence ( ) Gx X stab x  is 
the set of those g G  for which \ x g x , 
for all x X ; that is, the kernel of  . 
Example3.8. Let 3G S  in Example 2.7. Then ( ) (1)  Gx X stab x . Hence 
the kernel of permutation representation in this case is (1) , the neutral 
subgroup. 

Referring again to Example 2.3(d), if {1,2, , }, k n then ( )nSstab k is 
the set of all permutation which fix .k  Hence the intersection of these 
stabilizer for 1, 2, , k n is (1) , and so the kernel of the permutation 
representation in this case is the neutral subgroup.  

The converse of Lemma 3.6 is also valid as we show now. 
Theorem 3.9. Suppose :  XG S is a homomorphism of G to the group of 
all permutations on the set .X  The map defined by \ ,g g for all g G . Then 
it is an action of G on ,X and the permutation representation of this action is 
identical to .  
Proof. Since  is a homomorphism of G to the group of all permutations on 
the set ,X e is the identity permutation on X . So for all x X and , ,g h G
we have 

\ ( ) x e x e x  
and 

\ ( ) (( ) ) (( )( )) ( ( ))( ) ( \ ) \x gh x gh x g h x g h x g h        , 
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so that G acts on X . Now we show that the permutation representation of this 
action is identical to .  Let be the permutation representation of this action, 
that is, for g G and  x X , \ ( ).x g x g  This gives ( ) ( ) x g x g for all 
x X ; hence  g g for all g G , which shows that .    

4. Restricted Actions 
We find the relation of ( )Hstab x and ( )Gstab x when H G . Before 

finding it we first need to consider the subset of those elements which are 
fixed by an action. 
Definition 4.1. Let G act on the set .X We set  

( , ) { : \fix G X x X x g x   for all }g G ; 
it is called the fixed set of X under the action of G . 
Example 4.2. If G and X are given by the first example in Section 2, then 

( , )fix G X   but, if we change X to ' {[1],[2],[3],[4],[5],[6],[7]}X  , then 
( , ) {[7]}.fix G X   Also, { [7 ]} { [7 ]}GO  and ([7]) .Gstab G  

Note that ( , )fix G X  is a subset of X , and so it is not a group; for example, it 
is empty when the action is transitive. We have equivalent definitions  

( , ) { : { } { }} { : ( ) }.G Gfix G X x X O x x x X stab x G                    (4.1) 
Let G act on a set X and H G , we say H acts on a set X by 

restriction of the action of G on X . For example, if , 2 ,G H X G  Z Z
and the action of G on X is the natural one given by \ ,x g xg then the orbit 
of xunder the action of G is the set of all integer multiples of x, whilst the 
orbit of xunder the restricted action by H is the set of all even integer 
multiples of x.  

We have, for x X and H G , 
( ) ( )H Gstab x stab x H  .                                               (4.2) 

In fact, if ( )Hg stab x then  
\x g x  and g H , 
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which implies ( ) .Gg stab x H   Also, we have, if ( )Gg stab x H  then 
\x g x and g H , which implies ( )Hg stab x .  

Lemma 4.3.If H G , G acts on a set X  and H acts on a set X by 
restriction of the action of G , then  

( , )x fix H X if and only if ( )GH stab x . 
Proof. We have  

( , )x fix H X if and only if ( )Hstab x H           by   (4.1) 
if and only if ( )Gstab x H H                         by  (4.2) 

if and only if ( )GH stab x .  
 
Lemma 4.4. Let H G  and X the set of right cosets of H in G . Given 
g G and ,Hx X define 

( )\Hx g Hxg .                                                           (4.3) 
Then it is a transitive action of G on X  and 1( ) .Gstab Hx x Hx Hence

1[ : ] [ : ].G x Hx G H   
Proof. We have, for ,g h G and ,Hx X  

\Hx e Hxe Hx   
and 

(( ) \ ) \ ( ) \ ( ) \Hx g h Hxg h Hxgh Hx gh   ; 
hence it is an action. Further, it is a transitive action; for if , ,Hx Hy X  then  

1 1( )\ ( )Hx x y Hx x y Hy   ; 
so there is only one orbit, that is, X itself. Also  

1( )Gstab Hx x Hx  
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because 

1
1

( ) { : ( ) \ }
{ : }
{ : }

.

Gstab Hx g G Hx g Hx
g G Hxg Hx
g G xgx H

x Hx




  
  
  


 

By using Orbit-Stabilizer Theorem, we have  
1[ : ] [ : ( )] ( ) [ : ]GG x Hx G stab Hx o X G H    . 

 
     If H is the permutation representation of this action, then by Theorem 3.7,  

ker 1
H x G x Hx 

 . 
The entity on the right-hand side of this equation is called the core of H in G. 
If [ : ]G H n   , then XS ≃ nS , and H gives a homomorphism from G into

nS . Hence we have 
Theorem 4.5. (i) If H<G and[G : H] = n <∞, then there exists an injective 
homomorphism from G/core(H) = 1/ x GG x Hx

  into nS . 
(ii) If o(G/ core(H)) = m, then n | m and m | n!. 
Proof. (i) Since [G :H] = n <∞,G is the disjoint union of the collection of all 
right cosets of H in G. Let X be the set of right cosets of H in G. Given g G  
and ,Hx X define  

( ) \ .Hx g Hxg  
Then this is an action  by Lemma 4.4. Next, we define :H nG S  by  

\Hg g  . 
Then H is a permutation representation of this action by Definition 3.5. So, by 
Lemma 3.6 H  is a homomorphism. Also, by Theorem 3.7, ker 1

H x Gx Hx 
 .  
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By definition of H it is onto, Hence by First Isomorphism Theorem, the proof 
is complete. 
(ii) By (i) and assumption, !,m n  so that m | n!. By Proposition 1.15(ii),          
Hcore(H) .G We then have 

| | | | | ( ) |
| | | ( ) | | |

| ( ) |
| |

| | ,| ( ) |

G G core H
H core H H

core Hn m H
Hm ncore H





 

which implies that n | m.  
Now we find the number of subgroups of a group by using above 

theorem. 
Examples  4.6. (a) Now we find the number of subgroups of 5A . If G is 
simple and H<G, then  

1
  x G x Hx e , 

as this intersection forms a normal subgroup of G contained in H. Hence by 
Theorem 4.5, there is an injective homomorphism from Gto nS , and so 

( ) ( ) !. no G o S n  Therefore, if ( ) !,o G n G does not contain a subgroup 
(normal or not) of index n. For instance, consider 5G A  with order 60. 
Suppose 5H A , and 5[ : ] .A H n  As ! 60n only if n> 4, the theorem shows 

5A cannot have a subgroup of index 2, 3, or 4, so it cannot contain a subgroup 
of order 30, 20 or 15. In this case, we say that 5A is not reverse Lagrange. It 
does contain a number of subgroups of order 12 (with index 5). 
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(b) The group 4A  is also not reverse Lagrange. For consider 4G A with order 
12. Suppose 4H A , and 4[ : ] .A H n  As ! 12n only if n> 3, the theorem 
shows 4A cannot have a subgroup of index 2 or 3, so it cannot contain a 
subgroup of order 12 or 8. It does contain a number of subgroups of order 3 
(with index 4). 

We give an application of Theorem 4.5 here. 
Theorem 4.7. If G is an infinite group, ,H G and [ : ] , G H then G 
contains a normal subgroup K which satisfies ,K H and /G K is finite. 
Proof. We have known that 1 g Hg G . Clearly, 1

 x G g Hg G . Put 
1

x GK g Hg in Theorem 4.5. Since this theorem gives an injective 
homomorphism of G into a finite symmetric group nS , the factor group G/K is 
finite. 
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