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ORBIT-STABILIZER THEOREM AND CONSEQUENCES*
Aye Pyone!

Abstract

We present that a map \ g from a nonempty set X into itself where
each g is in a group G ; namely, is called an action of G on X . We

next present the Orbit-Stabilizer Theorem: If G acts on X, x € X then

the order of orbit of Xis equal to the index of stabilizer of X in G . Last,
we show that if an infinite group has a subgroup of finite index then it also
has a normal infinite subgroup of finite index, which is the consequence of
this theorem.

1. Basic Definitions and Examples

We begin by defining the group concept. Now for proper understanding
of this paper we need to explain some terminologies used. Moreover, there are
some basic definitions, examples, and Lagrange's Theorem (no proof), that
use to back our points.

Definition 1.1.A semigroup is a non-empty set X ={...,x,y,z,...} together

with a binary operation.which satisfies the following two conditions
(axioms):

(1) it is closed, or well-defined: for allx, y e X,
xoyeX.
(i1) it is associative: for all x, y, z €X,
(xoy)oz=xo0(yoz).
For example, the set of all integers is a semigroup under usual addition.

Definition 1.2. A group (G, o) is a semigroup, which satisfies the following
extra conditions (axioms):

(i11) G contains a unique element e which satisfies, for all g €G,
eog=goe=g
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(iv) for each g €G, there exists a unique g'€G satisfying
ghg=gog'=e.

The element e is called the neutral element of the group G or the identity for
G.

For example, the set of all integers is a group under usual addition with
neutral element 0.

Definition 1.3. Two groups G and H are called equal, G = H, if and only if
their underlying sets are equal and they have the same operation.

The order of a group G is the number (or cardinality) of elements in the
underlying set of G, it is denoted by o(G).

For example, G = {-1,1} is a group under usual multiplication, with
0(G)=2.

Definition 1.4. If two numbers d and bhave the property that their difference
a — bis integrally divisible by a number " (i.e., a—b/mis an integer), then
Gand bare said to be congruent modulo 772. The number /7 is called the
modulus, and the statement "a is congruent to b (modulo 777)" is written
mathematically as
a=b(modm).

This notation was first introduced by C.F. Gauss in 1801 in his famous
number theory text called ‘Disquisitiones arithmeticae’. Next we define
a~b if a=b(modM). Then this relation, ~, is an equivalence relation. Also

define [a]=1{b€Z|a=b(mod m)}. Let Z, denote the set{[0],[1],...,[m —1]} -

For example, Z \{[0]} is a group under multiplicative modulo 7

where M is prime.

Definition 1.5. If X is a set and Sy denotes the collection of all permutations

on X (that is, bijections of X onto itself), then this collection forms a group
under the operation of composition, called the symmetric group on X. If X is
finite with » elements, we usually take X to be the set {1,2,...,n} and write

Snfor SX, O(Sn) =n.



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 3

For example, let X = {1,2,3}.Then we write all permutations from X onto

J
)

itself in ray forms as follows:
1 2 3 1 2 3 1
12 3) 13 2) 2
I 23 1 2 3 1
23 1) 31 2) 3
We also write these ray forms in cycle notations as follows:

M2)(3), (23), (12), (123), (132), (13).

We see that (1)(2)(3) is the identity mapping; to simply, denote it by
(1).(12), (13) and (23) are called transpositions. Note that every permutations

NSNS e M)

in Sn is the product of transpositions. For instance, (123)=(13)(12), and
(123)(456) = (13)(12)(46)(45).

If the number of transpositions of a permutation is even (odd), then it is
called even (odd) permutation.

So S, ={(1),(12),(13),(23),(123),(132)} is a group under the composition
of permutations.

Definition 1.6. The symmetries of a regular polygon with n sides are the
clockwise rotations about the centre are now by 2z/n, and ‘reflection’ or
‘turning over’ is as before. The set of all symmetries form a group under the

composition of symmetries. This group is denoted by D, called dihedral.

We have D, , =<a,b:a" =b" =e, b_labza_1>.

For example, L)is the group of symmetries of the equilateral triangle, it

has order 6, D, = <a,b ad=b*=e,blab= a71> ={e,a,a’,b,ab,a’h,} .

For example, the alternating group A which is the group contained in

S, of all even permutations; 4, = {(1), (123), (132)}.
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Most groups contain a number of smaller groups using the same
operation, we shall, consider these now.

Definition 1.7. A subgroup H of a group G is a non-empty subset of G which
forms a group under the operation of G.

We write H < G when H is a subgroup of G. For example, if R"is the
group of all nonzero real numbers, then the group of all nonzero rational

numbers, Q*, is a subgroup of R*, thatis, Q" <R".
Definition 1.8 (i) A subgroup J of a group G is called proper if J # G, this is
denoted by J <G.

(i) The singleton set {e} forms a subgroup of all groups, it is called the
neutral subgroup and is denoted by <e> .

(iii) A subgroup H of a group G is called maximal in G if it is aproper
subgroup of G, and whenever a subgroup J exists satistying H < J < G,
then either J = H or J = G, so no subgroup lies strictly between H and G.

The neutral subgroup <e> is sometimes called the identity, trivial, or

unit, subgroup.
(iv) A subset S of elements of a group G with the property that every
element of G can be written as a finite product of elements of S and their

inverses is called a set of generators of G, written by G = <S > and say

G is generated by S or S generates G.

(v) A group G is called cyclic if there is an element ain G such that
G= {C{l . n GZ}. Such an element « is called a generator of G, is written
by G= <a>.

Note that it is a subgroup of G.

(vi) If H< G and g €G, then g 'Hg is called a conjugate subgroup of H.

Note thatg 'Hg < G, for anyg 'hg, g 'h'gwhere h, h'are in H, we have
(g'hg) (g 'h'g) =g 'hhg,
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and

(g'hg) =g 'h'g;
hence g 'Hg < G.

Definition 1.9. For H < G and g €G, the set gH= {gh : h €H} is called a left
coset of H in G, and the set Hg is called a right coset of H in G.

Definition 1.10. Let H < G. The number (cardinality) of left cosets of H in G
is called the index of H in G, it is denoted by [G: H].

Note that this equals the number of right cosets of H in G.

Examplel.11. Let G=5,={(1),(12),(13),(23),(123),(132)}and H = {(1),(12)}
Then H <G. The right cosets of Hare

H(2)=H,

H(13) ={(13),(132)},

H(23)={(23),(123)}
and so[G : H] = 3.

Definition 1.12. A group G is called simple if it contains no proper non-
neutral normal subgroup.

For example, H in above example is simple.
Theorem 1.13(Lagrange’s Theorem)If H < G then o(G)= o(H)[G : H].
Definition 1.14. If H < G, the core of H in G, core(H), is defined by

core(H) = ﬂgeG g 'Hg.
Proposition 1.15. Let G be a group and H < G. Then:
(i) core (H) is a normal subgroup of G.
(i) core (H) is the largest normal subgroup of G contained in H.

Proof. (i) For any x,yecore(H), let x= g_lhgand y= g71h1g for all
g€ G,h,h € H.Then
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xy=(g'hg)(g 'hg) =g 'hhg
for all g e G;s0, Xy €core(H). Next, we have x =g_1h_lg for all geG, and

so x ' ecore(H). Hence core (H)< G. Now we must show that core (H)

satisfies normality. For any & €q,
g 'xg =g, g 'hgg, = (gg,) ' hgg,
forall g € G;so, gl_lxg1 ecore(H).Hence core(H)< G .
(i1)) If N is any normal subgroup of G contained in H then we have
N=g'Ng<g'Hgforall g so that

N < ﬂgeGg_ng .

2. Actions

Given a set X', we introduce new collections of maps that transform X
into itself and which are governed by a group G ; that is, for each geGwe
define a map \g:X — X, and map composition corresponds a group

operation. The map \g is a permutation of X and it is called an action of G
on X.

We begin by considering an example. Let G be the group Z, \{[0]}
and let X = {[1],[2[,[3],[41,[5],[6]}. Consider the right multiplication of an
element Xof X by an element g of G , thatis, x-g. Later we shall write this
as x\ g. We have

x\e=ux,

that is, the right multiplication of element of X by € does not alter X . Also,
by associativity we have

x-(gh)=(x-g)-h,
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where g, he G, that is, applying ghto X is the same as first applying g to X,

and then applying Ato the result. We call this procedure an action of Gon X,
see Definition 2.1 below. Further, as [4]e G we have

[(1]-[41=[4], [2]-[4]1=[1], [3]-[4]1=[5], [4]-[4]=[2], [5]-[4]=[6], [6]-[4]1=[3],
that is, the set X has been permuted by this procedure. Also,

[11-([41[3]) = [1]-[5]=[5], and([1]-[4])-[3]=[4]-[3]=[5], gives
(11-([4103D = ([1]-[4D-[3]-

This example above gives the following definition:

Definition 2.1.Given a nonempty set X and a group G , we say G acts on
X if, for each g € G, there exists amap \g: X — X, and these maps satisfy

(1) x\e=x
(ii) x\(gh)=(x\g)\h

for all xeXand g,k e G. We call the map \g an instance of the action of the

2.1)

group G on the set X .

More formally, we can rewrite Definition 2.1, as follows: The function \
is a map from XxG to X which satisfies the two parts of (2.1), is called an
action of G on X . The function defined above is a right action. Elements of
group are denoted by the letters g,#,... and elements of set are denoted by

X,¥,z. We first prove the following basic result.

Theorem 2.2. Let G be a group and geG. Then the map \g: X —» X is a
permutation of the set X .
Proof. Suppose x, y e X and x\g = y\g.Then by (2.1) we have

x=x\e=x\(gg)=(x\g)\g" =(»\g)\g =y\(gg )=y,

that is, the map \g is injective. Secondly, suppose z € X then for ge G

z=z\e=z\(g'g)=(z\g H\g,

- is preimage of zunder the man \g. Hence this map is also

that is, z\g

surjective, and so it is a permutation of X.
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Examples 2.3. (a) Let G be a group and let X be the underlying set of G .
The group G acts on X by right multiplication if we define, for g €Gand
xekX,

x\g=xg.

Then clearly satisfies the condition (2.1) and the corresponding action
is called the natural action on G .

(b) Let ¥ be a vector space defined over the field F and F~the
multiplicative group of F . For each 4 €F* define \a:V — V by

via =va.
Then the standard vector space axioms give

v\l=vl=vandv\(ab)=wv(ab)=(va)b=(v\a)\b
where b € F; hence the multiplicative group F~ of F acts onV.
(c) Let G= <e> and X be an arbitrary set. Then G acts on X if we define x\e
equal to X for all x € X.
(d) Let G =S, and let X ={1,...,n},then if we define x\o =xofor oG and
x € X.Then it is an action of G on X, called the permutation action.

There are two important entities concerning an action, namely, orbits
and stabilizers. We first introduce orbits. Let the group G act on the set X .
Define a relation ~ on X by x~y if x\ g =y forsome geG.

Lemma 2.4. The relation ~ defined above is an equivalence relation.

Proof. Since x\e = x, x ~ x. Suppose X~ y,then x\g =y forsome g € G.
We have

y\g'=(x\g)\g " =x(gg)=x\e=x,

and so y~X. Finally, suppose Xx~yand y~zsothat x\g=y and y\h =z
for some g, 7 € G.Then

x\(gh)y=(x\g)\h=y\h=2z,

that is, x ~ z.0
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Definition 2.5. An equivalence class of the equivalence relation ~ given in
Lemma 2.4 above is called an orbit of the action of G on X.The orbit
containing the element xe€Xis called the orbit of X, and it is denoted by

Og{x}.

An action of G on X s called transitive if there is only one orbit, that
is, X itself, otherwise it is called intransitive.

We introduce the stabilizer, which is second new entity.

Definition 2.6. Given a group G acting on a set X, and x€ X, the subset of
G,
{geG:x\g=x},

is called the stabilizer of Xin G ; it is denoted by Sfabc(x) .

The stabilizer of Xis the elements of G whose associated maps do not
moveX.

Example 2.7. Let G=8,={(1), (12), (13), (23), (123), (132)} and X = {1, 2, 3} .Then

O,{li={yeX:1~y}
={yeX:1\g=y,geG}
=11,2,3}.

Also, we have O;{2} = O {3} = X. Next,
stab, (1)={geG:1\g=1}
={(D, (23)},
stabg(2) ={(1), (13)} and stab;(3) = {(1), (12)}.

Lemma 2.8. Let G be a group which acts on a set X. Then stab,(x) <G for
xelX.

Proof. By definition of an action of Gon X,x\e=x, ecstab,(x). If

x,y € stab.(x), then x\ g = x and x\ A =x. Again, we have
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x\(ghH)=(x\g)\h ' =(x\h)\h' =x,
so, gh™' e stab,.(x).
By Example 2.7and Lagrange's theorem we have
0(O,{1}) =0(G)/ o(stab;(1)) =[G : stab.(1)],
0(0;{2}) =0(G)/ o(stab,(2)) =[G : stab;(2)],
0(O;1{3}) =0(G) / o(stab;(3)) =[G : stab;(3)].

This result forces to a general result, namely, the Orbit-Stabilizer
Theorem.

Theorem 2.9. (Orbit-Stabilizer Theorem) If G acts on a set X, x e X,and
O, {x}is the orbit of x, then o(O;{x}) =[G stab,(x)].

Proof. By Lemma 2.8, Sfab(;(x) is a subgroup of G . We define a map 77
from OG {x} to the set of right cosets of SfabG(X) in G by
(x\g)7r=(stabs(x))g,

where g € G. We must show that this map is a bijection. First we show that
this map is well-defined. Suppose x\ g = x\ 4. Then

x\(ghH)=(x\g)\h ' =(x\h)\h' =x,

that is, gh ' estab,(x). Hence (stab;(x)) g =(stab;(x))h, as required.

Second, we show that this map is injective.  Suppose

(staby(x)) g =(stabg(x))h,and so gh™' estab,(x). Hence
x\h=(x\gh"\h=x\(gh'h)=x\g,

that is, 77 is injective. Last, we must show that 77 is surjective. For any

(StabG (x)) g, geG then there exists an element X\g €0, {x} such that

(x\g)yr= (stabG (x)) g,
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that is, 7 is surjective. The theorem now follows.[]
3. Applications

Now we calculate the order of the product of two subgroups of a group
by using the Orbit-Stabilizer Theorem. Note that /4 and J are both non-

normal subgroups of G , then HJ is not a subgroup of G, see the following
example.

Example 3.1. Let G=S;, m ={(1), 12)} and J ={(1), 13)}. Then H and

J are subgroups of G but HJ = {(1), (12), (13), (132)} is not a subgroup of
G , see the following table.

312 13 132)

M | @ a2 13 132
(12) | (120 (1) (132) (13)
(13) | (13) (123) (1)  (23)
(132) | (132) (23) (12) (123)

But if either H or J is a normal subgroup of G, HJ is a subgroup of G ,
see the following theorem.

Theorem 3.2. (a) If either A or J is a normal subgroup of G , then HJ is a
subgroup of G and HJ =JH.

(b) If both H and J are normal subgroups of G, then HJ is a normal
subgroup of G .

Proof.(a) Clearly HJis a nonempty subset of G. Suppose
heH, j,eJ, i=1,2and H <G (the proof is similar if J<G). Since H <G

, hhyeHand ji€J, j'(W'h)j,€H. Let j (W 'h)j,=h for some
h e H. Hence

(}lljl)_I}IZJZ :j1_1h1_1}5j1j1_1j2 :hjl_ljz eHJ,
that is, HJ is a subgroup of G . Now we show that HJ =JH. For any
heH, jeJ,wehave
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=il
H <G and above equation imply that HJ = JH.
(b) By (a) we only need to check normality. If ge G, he H and jeJ, we
have g"'hjg=g 'hgg ' jg € HJ,
by hypothesis, the result follows.[]
Theorem 3.3. If G is a finite group and H, J are subgroups of G , then

o(HJ)o(H J) = o(H)o(J) -
Proof. We define an action. Let X = {Hg : g € G}, the set of right cosets of
Hin G . The subgroup J acts on X by right multiplication if we set
Hg\ j = Hgj
for j eJ. This is an action since
Hg\e=Hge=Hg
and
Hg\ jij, = Hgj j, = (Hg\ j)\ /s
for Ji,J, €J. The orbit of O,{H}of His {H\j: je J}, this equals HlJ.

Note that HJ is a disjoint union of right cosets of /, and the orbit of H
under this action is the union of those cosets of /' we can get to starting with
H itself and applying elements j /. Hence

o(HJ)=0(H)x0(O,{H}).

Further, the stabilizer of H ,stab,(H),equals {jeJ:Hj=H}, and so
stab,(H)=H(\J. Hence, using the equation for o(H.J)above, the Orbit-

Stabilizer Theorem gives

o(HJ) - _o(J)
o(H) —O(OJ{H})—[J.stabJ(H)]——O(HmJ).
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Example 3.4. Suppose G=D, = <a,b @’ =b"=e,b'ab=a"" > H=(b)<Gand
J:<ab> <G. Then o(H)=o0(J)=2, HN\J={e},and soo(HJ)=4 by
Theorem 3.3. Clearly, HJ is not a subgroup of G as 4/ 6. Also neither H

) . . ) -1 ) )
nor J is normal, since ¢ 'ba = abis not in Hand a aba:azb, is not in J.
But it is union of two cosets. For as

HJ = He\JHab = H\JHba* = H\U Hda* .
Note that we also have HJ =eJUbJ =JUbJ.

We have shown that (Theorem 2.2) that an action of a group G on a set
X is a collection of permutations of X ; that is, the action provides a map
from G to S, .Now we shall consider this map.

Definition 3.5. Let the group G act on the set X. The map v:G— S, given by

gv =\g
for all g € G, is called the permutation representation of G for this action.

Lemma 3.6. The map Vgiven by Definition 3.5 is a homomorphism.

Proof. For all g, he Gandx e X, we have by the definition of action of the

group,
x\(gh)=(x\g)\h=x(\g\h).

Again, by the definition of composition of functions, we have \gh =\g \ &

and hence
(gh)v=\gh=\g\h=(gv)(),
as the required result.

This leads to the following result:
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Theorem 3.7. Let G act on X with permutation representation v as defined
above. Then

kerv = ﬂ stab;(x) .

xeX
Proof. As Vis a homomorphism, its kernel is the set of those g e G for which
\gis the identity permutation in S,, that is, x\g=xfor allxeX. But
stab;(x) is the set of those g e G for which x\ g = x, hence (.., stabg(x) is
the set of those g e G for which x\ g = x,

for all x e X ; that is, the kernel of v .

Example3.8. Let G = §, in Example 2.7. Then (1) _ stab, (x) = ((1)). Hence

the kernel of permutation representation in this case is<(1)>, the neutral
subgroup.

Referring again to Example 2.3(d), if k€{l,2,...,n},then stab, (k)is
the set of all permutation which fix k. Hence the intersection of these
stabilizer for k:1,2,...,nis<(1)>, and so the kernel of the permutation
representation in this case is the neutral subgroup.

The converse of Lemma 3.6 is also valid as we show now.

Theorem 3.9. Suppose 0:G — S, is a homomorphism of G to the group of
all permutations on the set X. The map defined by \g = go, for all g e G. Then
it is an action of G on X, and the permutation representation of this action is
identical to O.

Proof. Since O is a homomorphism of G to the group of all permutations on
the set X, @is the identity permutation on X . So for all xe Xand g,k e G,
we have

x\e=x(ec)=x
and

x\(gh) = x((gh)o) = x((go)(ho)) = (x(go))(ho) = (x\g) \ h,
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so that G acts on X . Now we show that the permutation representation of this
action is identical to O. Let Vbe the permutation representation of this action,
that is, forgeGand xeX, x\g=x(gv). This gives x(gv)=x(go)for all
xeX;hence gv=goforall g e G, which shows thatv=c. [

4. Restricted Actions

We find the relation of sfab,(x)and stab,(x)when H <G . Before

finding it we first need to consider the subset of those elements which are
fixed by an action.

Definition 4.1. Let G act on the set X. We set
fix(G,X)={xeX:x\g=x forallg eG};
it is called the fixed set of X under the action of G .
Example 4.2. If G and X are given by the first example in Section 2, then
fix(G, X) =@ but, if we change Xto X '={[1],[2],[3],[41,[5],[6],[7]}, then
fix(G,X)={[7]}. Also, 0, {[7]} = {[71} and stab;([7]) =G.
Note that fix(G, X) is a subset of X, and so it is not a group; for example, it
is empty when the action is transitive. We have equivalent definitions
Jix(G,X)={xe X: O, {x} ={x}} ={x e X : stab.(x) = G}. 4.1)

Let Gact on a set XandH <G, we say Hacts on a set X by
restriction of the action of G on X . For example, if G=Z, H =2Z, X =G
and the action of G on X is the natural one given by x\ g = xg, then the orbit
of Xunder the action of G is the set of all integer multiples of X, whilst the

orbit of Xunder the restricted action by His the set of all even integer
multiples of X.

We have, for xe Xand H <G,
stab,, (x) = stab,(x)(H . 4.2)

In fact, if g e stab,, (x) then

x\g=xand ge H,
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which implies g estab,(x)(1H. Also, we have, if gestab,(x)(\H then
x\g=xand g e H , which implies g €stab, (x).
Lemma 4.3.If H<G, Gacts on a set X and Hacts on a set Xby

restriction of the action of G , then
x € fix(H,X)if and only if H <stab.(x).

Proof. We have
x € fix(H,X)if and only if stab, (x)=H by (4.1)
if and only if stab.(x)NH = H by (4.2)

if and only if H <stab,(x).

Lemma 4.4. Let H<G and X the set of right cosets of Hin G . Given
geGand Hx e X, define

(H)\g=Hxg. (4.3)
Then it is a transitive action of G on X and stab,([x) =x"'Hx.Hence
(G:x"H]=[G: H].
Proof. We have, for g,7 e G and Hxe X,
Hx\e= Hxe= Hx
and
((Hx)\g)\h=(Hxg) \ h = Hxgh=(Hx)\gh;

hence it is an action. Further, it is a transitive action; for if Hx, Hy € X, then

(H)\x"y=(H)x " y=Hp;
so there is only one orbit, that is, X itself. Also

stab,(Fx)=x"'Hx
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because
stab,(Hx)={g e G: (Hx)\g = Hx}
={g € G: Hxg = Hx}
={geG:xgx' e H}
=x'Hx.

By using Orbit-Stabilizer Theorem, we have

[G: x ™' Hx] =[G:stab,(Hx)]| = o(X) =[G: H].

If Vjis the permutation representation of this action, then by Theorem 3.7,
_ -1
kerv, = ﬂxer Hx .

The entity on the right-hand side of this equation is called the core of H in G.

If [G:H]=n<x, then SXz S,, and Vigives a homomorphism from G into

n»

S,, . Hence we have

Theorem 4.5. (i) If H<G and[G : H] = n <o, then there exists an injective
homomorphism from G/core(H) = G/ ﬂxeG x'Hx into S,.

(i1) If o(G/ core(H)) = m, then n | m and m | n!.

Proof. (i) Since [G :H] = n <o0,G is the disjoint union of the collection of all
right cosets of H in G. Let X be the set of right cosets of H in G. Given geG

and Hx e X, define
(Hx)\ g = Hxg.

Then this is an action by Lemma 4.4. Next, we define v, : G — S, by
gVi =\g.

Then Vjyis a permutation representation of this action by Definition 3.5. So, by

Lemma 3.6 Vj is a homomorphism. Also, by Theorem 3.7, ker Vy, =ﬂ er_ch,
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By definition of Vjit is onto, Hence by First Isomorphism Theorem, the proof
is complete.

(i1) By (i) and assumption, m = n!, so that m | n!. By Proposition 1.15(ii),
H<core(H)<G. We then have

|Gl __ 1G] |core(H) |
|H | [core(H)] | H |
hem | core(H) |
| H |
__IH|
|core(H)|

which implies that n | m. O

Now we find the number of subgroups of a group by using above
theorem.

Examples 4.6. (a) Now we find the number of subgroups of 145 IfGis
simple and H<G, then
ﬂ x~ Hx =<e> ,
xeG

as this intersection forms a normal subgroup of G contained in H. Hence by

Theorem 4.5, there is an injective homomorphism from Gto S,,, and so
O(G)SO(S,,)=7”1!- Therefore, if o(G)>n!,G does not contain a subgroup
(normal or not) of index n. For instance, consider G =x45 with order 60.
Suppose <A and [4:H]=n As n!>60only if n> 4, the theorem shows

Ascannot have a subgroup of index 2, 3, or 4, so it cannot contain a subgroup

of order 30, 20 or 15. In this case, we say that ASis not reverse Lagrange. It

does contain a number of subgroups of order 12 (with index 5).
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(b) The group 144 is also not reverse Lagrange. For consider G=A4with order
12. Suppose H<A,, and [4,:H]=n As n!>12only if n> 3, the theorem

shows 144cannot have a subgroup of index 2 or 3, so it cannot contain a

subgroup of order 12 or 8. It does contain a number of subgroups of order 3
(with index 4).

We give an application of Theorem 4.5 here.

Theorem 4.7. If G is an infinite group, H <G,and [G:H]<xo,then G
contains a normal subgroup K which satisfies K < #,and G/ K is finite.

Proof. We have known that g'Hg < G. Clearly, ﬂxeG g 'Hg<G. Put

K :ﬂxeG g 'Hgin Theorem 4.5. Since this theorem gives an injective

homomorphism of G into a finite symmetric group S,,, the factor group G/K is
finite.O0
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