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Abstract 

In this paper, we show that the square graph of a tree T  has a 

spanning tree of maximum degree at most three and with at most 

 ( )3
max 0, ( ( ) 2) 2


  Tx T

t x
W

vertices of degree three, where 

( ) ( ) :
3

 T x V TW  there are at least three edge-disjoint paths of length at 

least two that start  x} and ( )Tt x
 
is the number of edge-disjoint paths with 

length at least two that start at a vertex x. 

Keywords: Square graph; 3-tree; spanning tree. 

Introduction 

For graph-theoretic notation not explained in this paper, we refer the 

reader to J. A. Bondy and U. S. R. Murty, 2008. We consider only simple 

graph in this paper. Let ( , )G V E be a graph with vertex set V and edge set 

E. A k-tree is a tree with the maximum degree at most k. A graph is called 

hamiltonian (traceable, respectively) if it has a spanning cycle (path, 

respectively). Thus a graph is traceable if and only if it has a spanning 2-tree. 

Therefore, the minimum number of vertices of degree three in a spanning      

3-tree F of a graph G shows how closed to be traceable the graph G is. 

 The classic condition for a graph to be traceable is the minimum 

degree condition, see O. Ore, 1960. It has been extended to consider whether a 

graph has a spanning k-tree, see S. Win, 1979, in references. It has also been 

extended to the condition for the existence of a spanning tree with at most k 

leaves, see H. J. Broersma and H. Tuinstra, 1998. H. J. Broersma and H. 

Tuinstra gave more structures of the graphs satisfying the condition given by 

S. Win, 1979; M. Aung and A. Kyaw, 1998, considered the maximum k-tree. 

V. Neumann-Lara and E. Rivera-Compo, 1991,  gave an independence 

number condition for a graph to have a spanning k-tree with bounded number 
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of vertices with degree k, for 4.k   M. Tsugaki, 2009,  gave a similar 

condition for 3.k   

The square graph of a graph G, denoted by 2 ,G  is the graph with

2( ) ( )V G V G  in which two vertices are adjacent in 
2G if their distance in G 

is at most two. Thus 
2G G . H . Fleischner, 1974,  proved that the square 

graph of a 2-connected graph is hamiltonian, which was extended by G. 

Hendry and W. Vogler, 1985. Y. Caro, I. Krasikov and Y. Roditty, 1991, 

showed that the square graph of a connected graph has a spanning 3-tree. 

Motivated by the results given above and by the observation that the 

minimum number of vertices of degree three in a spanning 3-tree F of a graph 
2G may measure how closed to be traceable the graph 

2G is, Q. Wu, 2016, 

showed that the square graph of a tree T has a spanning 3-tree F in which 

every leaf of T has degree one or two and F has at most 

( ) 3 5
max 0,min ,

2 2

n p T n        
     

     
 vertices of degree three where p(F) is 

the length of the longest path of F. In the whole paper, we let p(T) be the 

length of a longest path of a tree T. 

Theorem 1  

Let G be a connected graph of order n. Then 
2G has a 3-tree F with at 

most  

   
( ) 3 5

min max 0,min ,
2 2T G

n p T n



        
     

     
 

vertices of degree three. 

 In this paper, we intend to improve the result above. Firstly, we give 

the following definitions. Let T be a tree of order n and x a vertex of T. We 

define ( )Tt x
 
to be the number of edge-disjoint paths with length at least two 

that start at a vertex x and 3( ) ( ) :T x V T W there are at least three edge-

disjoint paths of length at least two starting at x}. 
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 Obviously, ( ) ( )T Tt x d x for any vertex x of T, where ( )Td x denote the 

degree of x in T. For example, for a star 
1, ,kT K it holds that ( ) 0Tt x  and 

( )Td x k for the center vertex x of 
1, .kK

 
From the definition of 3( ),TW one 

may obtain the following observation. 

Observation  2 

Let T  be a tree of order n. Then 

  
3 3

3

( ) ( )

( ) 1
( ) 2 ( ) ( ( ) 2) .

2
T T

x T x T

n p T
t x T t x

 

 
    

W W

W  

Proof  

Let 0P be a longest path of T. Then we may obtain T from 0P
 
by adding 

a path iP of T such that iP  has a leaf of T, iteratively. In order to increase 

3 ( )
( ( ) 2)Tx T
t x


 W

 at least one, these iP (note that, in each step of the 

proceeding of adding path with a leaf of T, two leaves distance of at least two 

may be counted once in 
3 ( )

( ( ) 2)Tx T
t x


 W

should have length at least two. 

Therefore, Observation 2 follows. 

 By Observation 2, in this paper, we continue to give an upper bound 

for the number of vertices of degree three of spanning 3-tree F in square graph 
2G as  

    
3

3( )
min max 0, ( ) 2 ( ) 2Tx TT G

t x T


  W
W  

where T is a spanning tree of G. Hence 

Theorem  3 

Let G be a connected graph of order n. Then 
2G has a spanning 3-tree 

F with at most 

   
3

3

( )

min max 0, ( ) 2 ( ) 2T
T G

x T

t x T




  
  

  

W

W  
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vertices of degree three, where T is a spanning tree of G. 

 Observation 2 shows that the bound in the theorem above improves the 

one gave in Theorem 1. In the next section, we shall give some auxiliary 

results, which will be used to proof of Theorem 3 in Section 4. In the last 

section, we shall show the sharpness of Theorem 3 and Observation 2 and also 

compare two upper bounds in Theorems 1 and 3, respectively. 

Preliminaries and Auxiliary Results 

For ( )S V G  or E(G), we denote by [ ]G S  the subgraph of G induced 

by S. For a positive integer s, the graph 1,( )sS K  is obtained from the complete 

bipartite graph 1,sK by subdividing each edge once. The graph G is said to be 

1,3( )S K -free if it does not contain any induced copy of 1,3( ).S K We use ( )GN u

and ( )Gd u  to denote the neighbors and the degree of u in G. A leaf or pendant 

vertex is a vertex of degree one in a graph. A tree T is called a caterpillar if by 

deleting all pendant vertices of T we get a path. The following results will be 

used in our proofs. 

Theorem  4 

If G is a connected 1,3( )S K -free graph of order at least three, then 
2G

is hamiltonian. 

Corollary  5 

If G is a connected 1,3( )S K -free graph, then 
2G has a hamiltonian path 

starting at any vertex of G. 

 Let 1 2( ), ( )n T n T and 3( )n T  denote the number of vertices of degrees 1, 

2 and 3 in a 3-tree T of order n, respectively. We have 

    1 2 3( ) ( ) ( )n T n T n T n              (1) 

and 

   
1 2 3( ) 2 ( ) 3 ( ) 2 ( ) 2( 1),n T n T n T E T n               (2) 

one may obtain that 2 3( ) 2 ( ) 2,n T n T n    and that 
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    1 3( ) ( ) 2.n T n T              (3) 

A well known and easily proved equality for 3-trees: they are the same 

as 2 ( ) 0n T  in the above equations, one can then show that 

2
1 3

( ) 2
( ) ( ) 2 .

2

n n T
n T n T

 
    So we only need to consider the upper 

bound of 3( )n T  for a 3-tree T. 

Lemma  6 

If 
3( ) 0,T W then 2T has a hamiltonian path starting at any vertex. 

Proof 

Since 
3( ) 0,T W T is 1,3( )S K -free. Then by Corollary 5, the lemma 

holds. 

Lemma  7 

For each caterpillar T (i.e., 2

3( ) 0),T TW  has a spanning path 

starting at one end vertex u of longest path of T and ending at neighbor of u. 

Proof 

  We prove by induction on ( ) .V T  It is obvious when ( ) 4.V T 

Suppose that it holds when ( ) 1( 5).V T n n   We now consider the case 

when ( ) .V T n  We choose a longest path P of T and take an end vertex u of 

P and let ( ).pv N u Let 1 .T T u  Then 
1( ) 1.V T n  By induction 

hypothesis and when 2

1( ) 2,Td v T has a spanning path Q  starting at vertex v 

and ending at h, where ( ) \{ }.Th N v u Thus { }uhQ  is a spanning path 

starting at vertex u and ending at vertex v in 
2.T  By induction hypothesis and 

when 2

1( ) 3,Td v T has a spanning path 1Q  starting at vertex w and ending at 

vertex v, where ( ) \{ }Tw N v u  with ( ) 1.w Td  Thus { }uw1Q is a spanning 

path starting at vertex u and ending at vertex v in 
2.T  
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Lemma  8 

Let T be a tree of order n with 3( ) { }.T uW Then 2T  has a spanning  

3-tree F with 3( ) ( ) 2Tn F t u   such that ( ) 1Fd u  and each leaf in T has 

degree at most two in F. 

Proof 

Let the neighbors of u be labeled by 
1 1 2, , , , , , ( )

Tt t t du u u u u u 
 such 

that ( ) 2T id u   for 1 i t   and ( ) 1T id u   for  1 ( ).Tt i d u    Let iT  be the 

component of T u  with at least two vertices and ( ) (1 ).i iu V T i t   Since 

3( ) { },T uW 3( ) iTW
 
Ø. Let 1 1{ }.uT T uu   Then by Lemma 7, 2

uT  has 

spanning path uQ starting at vertex u and ending at vertex .1u  By Lemma 6, 

2 (2 )iT i t  has a spanning path iQ starting at iu .  

Then 2

u 2 1 1 2 ( ) 2 3( ) ( ( )) ( )  
     T

t

i i t t d u tF T E E E u u u u u u uQ Q is 

a spanning 3-tree in 2T . This implies that 3( ) ( ) 2Tn F t u   such that 

( ) 1Fd u   and each leaf in T has degree at most two in F. 

Lemma 9 

The following statements hold: 

(i) If 3( ) { },T uW then 2T has a spanning 3-tree F with 

 3( ) max 0, ( ) 4Tn F t u   such that each leaf in T has degree at most 

two in F. 

(ii) If 
3( ) 2,T W then 2T has a spanning 3-tree F with 

3
3 ( )
( ) ( ) 6


  Tx T

n F t x
W

 such that each leaf in T has degree at most 

two in F. 

Proof  

Suppose that 3( ) { }.T uW Then by Lemma 6, it is easy to show that 

2T  with ( ) 4Tt u  is traceable. In the following, we assume that ( ) 5.Tt u   Let 
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the neighbors of u be labeled by
1 1 2 ( ), , , , , ,

Tt t t d uu u u u u 
 such that

( ) 2T id u   for 1 i t   and ( ) 1T id u   for  1 ( ).Tt i d u    Let iT  be the 

component of T u with at least two vertices and ( ) (1 ).i iu V T i t    Then

3( ) iTW Ø. Let 12 1 2  T T T  1 2,uu uu  and 34 3 4 3 4{ , }.T T T uu uu  

 Obviously, 12T  and 34T are both caterpillars. Then by Lemma 6, 

2 2

12 34andT T  have a spanning path lP  and sP starting at vertex u, respectively.  

By Lemma 6, 2 (5 )iT i t   has a spanning path iQ starting at vertex .iu Then 

 2

5 1 2 ( ) 5 6( ) ( ) ( ) ( )  
     
 T

t

l s i i t t d u tF T E P E P E E uu u u u u uQ is a 

spanning 3-tree in 
2.T  This implies that 3( ) ( ) 4Tn F t u   such that each leaf 

in T has degree at most two in F. 

 Suppose that 3( ) { , }T u vW and ( ).uv E T  Let 1T  and 2T  be two 

components of { }.T uv  Then by Lemmas 6 and 8, 2

1T  has a spanning 3-tree 

1F
 
with 3 1( ) ( ) 3Tn F t u   and 

1
( ) 1,Fd u  2

2T  has a spanning 3-tree 2F with 

3 2( ) ( ) 3Tn F t v   and 
2
( ) 1.Fd v  Then 1 2 { }F F F uv    is a spanning 3-tree 

of T with 
3

3 ( )
( ) ( ) 6Tx T

n F t x


  W
 and each leaf in T has degree at most two 

in F. 

 Suppose that 3( ) { , }T u vW and ( ).uv E T  Obviously, u and v are 

connected by path P. We assume that , ( ) (may ).uw vw E P w w    Let 1T  

and 2T  be the component of { , }T uw vw containing vertex u and v, 

respectively. Then by Lemmas 6 and 8, 2

1T  has a spanning 3-tree 1F with 

3 1( ) ( ) 3Tn F t u   and 
1
( ) 1,Fd u  2

2T  has a spanning 3-tree 2F with 

3 2( ) ( ) 3Tn F t v   and 
2
( ) 1.Fd v  Let 0 1 2( ) { , }.T T T T uw vw     Since 0T is 

a caterpillar, 2

0T
 
has a spanning path Q  with end vertices u and v. Then

1 2F F F  Q  is a 3-tree of 2T with 
3

3 ( )
( ) ( ) 6Tx T

n F t x


  W
 and each 

leaf in T has degree at most two in F 
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Proof of  Theorem 3 

In this section, we present the proof  of  Theorem 3. In order to prove 

Theorem 3, we only need to show the following result. 

Theorem 10  

Let T be a tree. Then 2T  has a spanning 3-tree F with at most  

3

3

( )

max 0, ( ) 2 ( ) 2T

x T

t x T


  
  

  

W

W  

vertices of degree three such that each leaf in a spanning tree T has degree at 

most two in F. 

Now, we may present the proof of  Theorem 10. 

Proof  of  Theorem  10 

We prove this theorem by induction on 
3( ) .TW

 
If  

3( ) 2,T W then 

by Lemmas 7 and 9, the theorem holds. Suppose that the theorem holds when 

3( ) ( 3).T k k W  

In the following, we only need to show that the conclusion of Theorem 

10 holds for the case when 
3( ) .T kW  

 We may choose one pair of vertices { , }u v where 3( )u TW and 

( )Tv N u
 

such that 
3 1( ) 1T W and 

3 2 3( ) ( ) 1,T T W W where 1T
 

is a 

component of { }T uv and 2 1( ) { }.T T T uv    

 By Lemmas 6 and 8, 2

1T has a spanning 3-tree 1F
 

such that             

3 1( )n F 
1
( ) 2Tt u  ( ) 3Tt u   and 

1
( ) 1.Fd u  Let 2F be a spanning 3-tree of 2

2 .T
 

By induction,  23 2
3 2 ( )
( ) max 0, ( )Tx T

n F t x


  W
3 22 ( ) 2 ,T W and 

each leaf in 1T  and 2T
 
has degree at most two in 1F

 
and 2F , respectively. Then 

by 
2 2
( ) 1,  ( ) 2. T Fd u d u  Let 1 2.F F F   Since 

1
( ) 1,Fd u 

 
F is a spanning  

3-tree of 2T  with 3 3 1 3 2( ) ( ) ( ) 1n F n F n F    such that each leaf in T has 

degree at most two in F. 
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 We distinguish the following three cases to obtained our results. 

Case  1 

( ) 2.Tt v   

Then 3 3 2( ) ( ) { }.T T u W W Note that 
23 2

3 2( )
( ) 2 ( ) 2 0.Tx T

t x T


   W
W

Therefore, 

   3 3 1 3 2( ) ( ) ( ) 1n F n F n F    

             
2

3 2

3 2

( )

( ) 3 max 0, ( ) 2 ( ) 2 1


  
      

  
T T

x T

t u t x T
W

W  

 
3

3

( )\{ }

( ) 3 ( ) 2 ( ) 1 2 1


 
       

 
T T

x T u

t u t x T
W

W  

3

3

( )

( ) 2 ( ) 2.T

x T

t x T


  
W

W  

Case  2 

( ) 3.Tt v   

Then 3 3 2( ) ( ) { , }.T T u v W W
 

Note that possible 
23 2

3 2( )
( ) 2 ( ) 2 1,Tx T

t x T


    W
W however,

23 2
3 2( )

( ) 2 ( ) 2 1 0.Tx T
t x T


    W

W  Therefore, 

3 3 1 3 2( ) ( ) ( ) 1n F n F n F    

  
2

3 2

3 3 2

( )

( ) ( ) 3 max 0, ( ) 2 ( ) 2 1


  
      

  
T T

x T

n F t u t x T
W

W  

2

3 2

3 2

( )

( ) 3 max 0, ( ) 2 ( ) 2 1 1T T

x T

t u t x T


  
       

  

W

W  

( ) ( ( ) 3) 3   T Tt u t v  
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      
3

3

( )\{ , }

( ) 2 ( ) 2 1 1T

x T u v

t x T


 
     
 


W

W    

  
3

3

( )

( ) 2 ( ) 2.T

x T

t x T


  
W

W  

Case  3 

( ) 4.Tt v   

Then 3 3 2( ) ( ) { }.T T u W W Note that 
2
( ) ( ) 1T Tt v t v  and 

3
3( )\{ }

( ) 1 2( ( )Tx T u
t x T


  W

W 1) 2 0   . Therefore, 

3 3 1 3 2( ) ( ) ( ) 1n F n F n F    

          
2

3 2

3 2

( )

( ) 3 max 0, ( ) 2 ( ) 2 1


  
      

  
T T

x T

t u t x T
W

W  

          3 ( )\{ }

( ) 3 max 0, ( ) 1



   


T T

x T u

t u t x
W

 

  
32( ( ) 1) 2 1T   W  

          3

3

( )\{ }

( ) 3 ( ) 2 ( ) 1 1T T

x T u

t u t x T


 
      

 


W

W  

          3

3

( )

( ) 2 ( ) 3T

x T

t x T


  
W

W  

         3

3

( )

( ) 2 ( ) 2.T

x T

t x T


  
W

W  

In all cases, 
3

3 3

( )

( ) max 0, ( ) 2 ( ) 2 .T

x T

n F t x T


  
   

  

W

W This proves 

the theorem for the case when 
3( ) .T kW  Therefore, by induction, the 

theorem holds. 
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Concluding Remarks 

Firstly, we have the following remark that shows the sharpness of the 

bound in Theorem 3. 

Remark  11 

The upper bound in Theorem 3 is sharp, because the square of the tree 

T with 3( ) { }T uW  and ( ) 5Tt u  has no hamiltonian path. 

Observation 2 shows that the upper bound in Theorem 3 is better than 

Theorem 1. On the other hand, we may construct many examples to show that 

those two bounds in Theorems 1 and 3 may have many different. To see this, 

we let 0T
 
be a tree that is composed of k pathes of  length exactly 2l   (we 

may take l k ) with a common vertex and the length of a longest  path of 0T
 

is 2l (i.e., the tree obtained by subdividing all edges in the star 1,kK  exactly 

1l   times).  

Then 

     
0( ) 1V T lk   

    
0

3 0( )

( ( ) 2) 2 4T

x T

t x k


   
W

 

and 

   0 0( ) ( ) 3 1 2 3 2 4
.

2 2 2

V T p T lk l lk l      
 

 

From the equations above, one may know that the different 
22 4 2 2 12 ( 2) 8

( 4) if 3, respectively
2 2 2

lk l lk l k k
k l k

       
      

 

 between the two upper bounds in Theorems 1 and 3, respectively, may be any 

large 
2( 2) 8

(
2

k  
 if 5,l k  respectively .  
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 Finally, we show that the inequality in Observation 2 is also sharp. To 

see this, we construct a tree as follows: we use 0T
 
to denote the resulting 

graph obtained a path 0P
 
by attaching at least one pendant edge on each vertex 

of 0P . Now we obtain the graph 0T  from 0T
 
by subdividing these pendant 

edges exactly once. Then 
03 0( )

( ( ) 2)Tx T
t x

 W

0 0( ) ( ) 1

2

V T p T  
  (here we 

suppose that 
0 0( ) ( ) 1V T p T  

 
is even). The sharpness shows that 

Observation 2 is itself interesting. 
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