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Abstract 

N-body simulations of homogeneous galaxies have been made to explore the physical proposal of 

critical density and mass, angular momentum and so on. Fundamental properties of galactic 

dynamics and structure formation have also been studied. Mathematica codes and finite element 

method have been briefly explored. As the situation dictates, Mathematica software is used for 

some detailed computations and visualization of the results. 
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Introduction 

Attempts have been made to investigate the structure formation in the gravity f(R) 

model with N-body simulations. The   gravity model is a proposal which, unlike other viable           

f(R) models, not only changes the gravitational dynamics, but can in principle also have 

signatures at the background level that are different from those obtained inCDM 

(Cosmological constant, Cold Dark Matter). The aim of this paper is to study the nonlinear 

regime of the model in the case where, at late times, the background differs from CDM. We 

quantify the signatures produced on the power spectrum, the halo mass function, and the density 

and velocity profiles. To appreciate the features of the model, have compared it to CDM and 

the Hu-Sawicki f(R) models. For the considered set of parameters it was found that the screening 

mechanism is ineffective, which gives rise to deviations in the halo mass function that disagree 

with observations. This does not rule out the model per se, but requires choices of parameters 

such that (
0Rf ) is much smaller, which would imply that its cosmic expansion history cannot be 

distinguished from CDM at the background level. 

Since the discovery in 1998 that the Universe is speeding up instead of slowing down (as 

would be expected if gravity is always attractive), considerable effort has been devoted to 

understanding the physical mechanism behind this cosmic acceleration.(Peebles P.J.E,1970) The 

two main theoretical approaches considered in the literature to explain this phenomena are (1) to 

assume the existence of a new component with a sufficiently negative pressure )3( p , 

generically denoted dark energy; and (2) to consider that general relativity has to be modified at 

large scales, or more accurately, at low curvature (modified gravity). The simplest dark energy 

candidate is Einstein’s cosmological constant ( ) with an equation of state 1 DEDEDE p  . 

However, in spite of its very good accordance with current observations, has some theoretical 

difficulties such as its tiny value as compared with theoretical predictions of the vacuum energy 

density, the cosmic coincidence problem, and related fine-tuning. This situation has motivated 

the search for alternatives like modified-gravity theories. The simplest modified-gravity 
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candidates are the so-called f(R)-theories, in which the Lagrangian density )(RfRL   is a 

nonlinear function of the Ricci scalar R.(Planck et al ,2013) 

As is well known, metric f (R)-theories can be thought of as a special case of a scalar-

tensor theory; a Brans-Dicke model with a coupling constant 0BD . An accelerated expansion 

appears naturally in these theories. The very first inflationary model, proposed by Starobinsky 

more than three decades ago, is driven by a term of the type )0()( 2  RRf and is still in 

excellent accordance with observations. More recently, the idea of an acceleration driven by late-

time curvature has also been explored. These authors considered a theory in which

)0α and 0(n)(  nRRf  . However, these models do not have a regular matter dominated 

era and are incompatible with structure formation.(Amendola et al,2007) 

To build a cosmologically viable f(R) theory, some stability conditions have to be 

satisfied (a) 022  dRfdfRR
(no tachyons);(b) 011  dRdffR (the effective 

gravitational constant  )1( RNeff fGG  )does not change sign;(c) after inflation, 

0)(lim  RRfR
and 0)(lim  RfR

(General Relativity is recover at early time);        

(d) )(Rf is small in recent times, to satisfy solar system and galactic scale constraints. In 

addition to those conditions, there are some desirable characteristics that a viable cosmological 

model has to satisfy. It should have a radiation-dominated era at early times and a saddle point 

matter- dominated era phase followed by an accelerated expansion as a final attractor. 

There are viable f(R) gravity theories that satisfy all the criteria above. However, there is 

generic difficulty from which all these “viable” f(R) theories suffer: the curvature singularity in 

cosmic evolution at a finite redshift. It can be shown that this type of singularity problem can be 

curved, for instant, by adding a high-curvature term proportional to 2R to the density Lagrangian. 

Therefore, it is not possible to have cosmic acceleration with totally consistent f(R) theory 

modifying gravity at low curvatures. 

The specific case of a viable f(R) theory called  gravity. Generally, in almost all viable 

f(R) theories, structure formation imposes such strong constraints on the parameters of the 

models that the effective equation of state parameter cannot be distinguished from that of a 

cosmological constant. In   gravity the steep dependence on the Ricci scalar R facilitates the 

agreement with structure formation. The parameter that controls the steepness in  gravity allows 

measurable deviation from MCD at both linear perturbation and background levels, while still 

compatible with both current observations.(Appleby et al,2010) The main goal of this paper is to 

study the effects of  gravity on the structure formation at nonlinear scales for choices 

parameters where the model has observable signature on the background expansion history of our 

Universe. 

 -Gravity Review 

We investigate spatially flat cosmological models in the context of gravity, a viable f (R) 

theory defined by the following ansatz: 
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Where 


x
tn dtetxn

0

1),( is the incomplete  –function and , n and *R  are free positive 

constants. In reality,  gravity can be thought of a simple generalization of exponential gravity. 
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Obtained by fixing n = 1 in Eq. (1). We emphasize that  gravity can satisfy all the stability and 

viability conditions. For fixed n, there is a minimum value ( min ) of the parameter such that for 

values min  a late-time accelerated attractor is achieved. Consider this case throughout from 

Eq.(1) ,obtain the following derivatives: 
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Note from Eq.(3) that with increasing n, the steepness of the f (R) function increases. Higher n 

means smaller
0Rf , and the departures from GR will be smaller accordingly. (O’ Dwyer et al, 

2013) 

Although there is no cosmological constant, f (0) = 0, it follows from Eq. (1) that GR with 

 is recovered at high curvatures. Therefore, for *RR  the models behave like CDM. Since 

interested in phenomena that occurred after the beginning of the matter-dominated era, neglect 

radiation and write the effective cosmological constant (the cosmological constant of the 

referenceCDM model) as 
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Figure 1 The 2D and 3D profiles of gamma gravity f(R) 
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Figure 2  3-D snapshot profiles of gamma gravity f(R) 

 

In the equation above, 
0

~
m denotes the present value of the matter density parameter that 

aCDM model would have if it had the same matter density today )~( 0m  as the modified gravity 

f(R) model.
0

~
H represents the Hubble constant in the referenceCDM model. Therefore,
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0m and 0H are the present value of the matter 

energy density parameter and Hubble parameter in the f(R) model, respectively. It is useful to 

rewrite *R as 
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Figure 3  Profile of R*/m
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in terms of     
and Ωm0. 
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N-Body Equations 

f(R) models are equivalent to a scalar-tensor theory, where the first derivative of the f (R) 

function, fR. (Brax et al.2008) This field propagates according the equation 
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Where 42 8 cG  and T is the trace of energy-momentum tensor, 
TgT  .In the quasi-

static limit, this equation becomes 
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and ).(12)()( 12 axaxaR  The Ricci scalar R in function of fR is given by inverting Eq. (3) 
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The geodesic equation, needed to update the particle positions, reads 
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Where  is the Newtonian potential, which the dynamics is given by the Poisson equation 
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Figure 4  Profile of 2  in terms of and m  
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When implementing these equations in the N-body code, need to rewrite them in code-

units given by 
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Here 
0B is the size of the simulation box. In terms of RR faf 2~

 , the evolution equation 

becomes 
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These are the only equations need to implement and solve in the N-body code. For 

comparison it also needs the linearized field equation. Simulations with this equation compared 

to the full fR equation is a good measure of the amount of screening that takes place in the model. 

The linearized fR equation is simply 
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and the geodesic equation becomes 

                                u
td

xd
codecode 

2

2

~

~
                                                        (19) 

 

We have 

                               nRaR

n

e
aR

R

H

aR

n

BHa
Baam )(*

2

0

2

00

2
2

0

22

)(

)(

3

)(
)( 











                      (20) 



J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2B 91 

 

Figure 5  Profile of the 2

code  in terms of 
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Figure 6 Profile of the 
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Figure 7  Profile of the 
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Result and Conclusions 

We have investigated the nonlinear evolution in the  gravity, the f(R) theory of gravity 

that is a viable alternative toCDM. In the models under investigation one uses a screening 

mechanism to suppress the deviations from General Relativity at small and large cosmological 

scales. Specifically, this is what we called the chameleon screening mechanism. As a result of 

this screening mechanism, the strongest signatures in these models are expected to occur at the 

nonlinear regime of structure formation. Therefore, to unveil the imprints of such theories at 

astrophysical scales, we ran several cosmological N-body simulations. Originally, programmes 

are ran on highs specially supercomputers. In this paper, we make use of the simple iteration 

preceding such as Listpointplot3D, BesselJ(2Dand 3D),Contourplot3D, Revolutionplot3D and so 

on. The interesting point is such that the resulting normalizations are in agreement with the done 

by the high capacity computers.  
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