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Abstract 
 Kn is a complete graph with n vertices. ( )m

nK  is a graph containing 
m copies of Kn with each vertex of a Kn is only adjacent to a vertex of each 
of the other Kn. 
We will show that the adjacency matrix of ( )m

nK  has 
(i) (n – 1)(m – 1) eigenvalues of  –2 
(ii) m – 1 eigenvalues of  n – 2 
(iii) n – 1 eigenvalues of  m – 2 
(iv) an eigenvalue of  n + m – 2. 

 
Composite Graph ( )m

nK  and Its Adjacency Matrix 
Kn is a complete graph with n vertices. ( )m

nK  is a graph containing m copies of 
Kn with each vertex of a Kn is only adjacent to a vertex of each of the other Kn. 
(See figure 1 for (4)

3K ) 

 
Figure 1. (4)

3K  
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Basic definitions and notations on graphs and their eigenvalues can be found 
in [1, 2, 3] and others.  
The adjacency matrix of ( )m

nK  is like as follow: 
n n n n

n n n n
n n n n
n n n n
n n n n n

K I I I
I K I I
I I K I
I I I I
I I I I K

        









 

For example, adjacency matrix of (4)
3K  is 

0 1 1 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 1 0
1 1 0 0 0 1 0 0 1 0 0 1
1 0 0 0 1 1 1 0 0 1 0 0
0 1 0 1 0 1 0 1 0 0 1 0
0 0 1 1 1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 1 1 1 0 0
0 1 0 0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 0 1 1 1 0

                   

 

Since adjacency matrix 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1
1 1 1 1 0

        









 of Kn is like as 
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

K I I I
I K I I
I I K I
I I I I
I I I K

        











,  

( )m
nK  can be seen as a generalization of complete graphs. 
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Eigenvalues and Eigenvectors of Adjacency Matrix of ( )m
nK  

The adjacency matrix of ( )m
nK  has 

(i) (n – 1)(m – 1) eigenvalues of  –2 
(ii) m – 1 eigenvalues of  n – 2 
(iii) n – 1 eigenvalues of  m – 2 
(iv) an eigenvalue of  n + m – 2. 
By using each of the eigenvectors shown in figure 2, one can check that 

there are (n – 1)(m – 1) eigenvalues of  –2. 
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Figure 2. (n – 1)(m – 1) eigenvectors of  eigenvalue  2 



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 111 

1 1 1
1 1 1

1 1 1
1 0 0
1 0 0

1 0 0
, , ,0 1 0

0 1 0

0 1 0

0 0 1
0 0 1

0 0 1

                                                                                                                   

  

  



  

  

  


,                     

1 1 1
1 0 0
0 1 0
0 0 0

0 0 0
0 0 1
1 1 1

1 0 0
0 1 0

, , ,0 0 0

0 0 1

1 1
1 0
0 1
0 0

0 0
0 0

                                                                                                        

  



  

  

 

1
0
0
0

0
1

                                 



,               

1
1

1
1
1

1
1
1

1

1
1

1

                           









  

                                      (a)                                     (b)                                     (c) 
Figure 3. (a) m – 1 eigenvectors of  eigenvalue n – 2;  

(b) n – 1 eigenvectors of  eigenvalue m – 2; (c)  an eigenvector of eigenvalue 
n + m – 2. 

 According to eigenvectors shown in figure 3, there are m–1 eigenvalues 
of  n – 2, n – 1 eigenvalues of  m – 2 and an eigenvalue of  n + m – 2. 
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