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INVESTIGATION ON ENERGY LEVELS OF BOTTOMONIUM  

Yin Min Thant1, Aye Thandar Htay2 

Abstract 

Energy levels of the bottomonium are determined by solving Schrödinger equation with Numerov 

method. In this paper, we solved the non-relativistic Schrödinger equation theoretically with 

screened potential that includes spin dependent terms in the potential. It was used to predict the 

bottomonium ηb’s (singlet S and D states), ϒ’s (triplet S and D states), hb’s (singlet P and F states) 

and χ’s (triplet P and F states).  
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Introduction 

 Bottomonium is the bound state of a bottom quark (b) and its anti bottom quark (b̅). The 

bottom quark was first described theoretically in 1973 by physicists Kobayashi and Maskawa and 

name "bottom" was introduced in 1975 by Harari [M. Kobayashi and T. Maskawa, Prog. Theor. 

Phys. 49 (1973) 652, H. Harari, Phys. Lett. B 57 (1975) 265]. The mass of bottom quark is about 

4.2 GeV/c2. It is four times the mass of a proton and many orders of magnitude larger than common 

"light" quarks such as up, down and strange. If one attempts to separate a quark-antiquark pair, the 

energy of the gluon field becomes larger and larger until a new quark-antiquark pair can be created. 

As a result, one does not end up with two isolated quarks but with new quark-antiquark pairs 

instead. This absolute imprisonment of quarks is called quark confinement. So, it is impossible to 

observe a free quark in nature. An illustrative picture depicting the quark confinement is shown in 

Fig. 1. 
 

 
Figure 1 Quark confinement 

 

Bottomonium States  

 The total spin of quark-antiquark bound state system have either spin singlet ‘S = 0’ or spin 

triplet ‘S = 1’. The parity and charge-conjugation eigenvalues can be written as P = (−1)L+1 and 

C = (−1)L+S respectively. In this equation, ‘L’ represents the orbital angular momentum. The 

notation S, P, D and F for states corresponds to L = 0, 1, 2 and 3. The states of the quark-antiquark 

bound state system can be represented by n2S+1LJ ; J and n stand for total angular momentum of 

quark-antiquark bound state system and the principle quantum number n = 1, 2, 3 and so on. As 

an example, the full notation for (1S) is 13S1. 
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 There are experimental observations of bottomonium states with different orbital angular 

momenta which are ‘upsilon (  )’ for triplet S-states; (1S), (2S), (3S), (4S), (5S) and (6S), 

‘eta (b)’ for singlet S-states; b (1S), b (2S), b (3S), b (4S), b (5S) and b (6S), ‘chi (  )’ for 

triplet P-states; 𝜒𝑏(1P), 𝜒𝑏 (2P), and 𝜒𝑏 (3P), hb for singlet P-states; hb (1P), hb (2P) and hb (3P), 

upsilon  (1D) for triplet D-state and b2 for singlet D-states respectively. In other words, ‘upsilon 

and eta’ are defined as the principal quantum numbers (odd) for triplet and singlet states and then 

‘chi and hb’ are assigned for even quantum numbers. 

Potential Models for Interaction between Bottom and Antibottom 

 There are various non relativistic potential models to describe the bottomonium spectrum. 

Also potential models have been successful in describing the spectra below the open-flavor 

thresholds for both charmonia and bottomonia. However, it is well known that these potential 

models, which incorporates a Coulomb term at short distances and a linear confining potential at 

large distance. It is useful to improve the potential model itself to incorporate the screening effect 

and compare the model predictions with the experimental data as a phenomenological way to 

investigate the screening effects on heavy quarkonium spectrum [E. Eichen et al., Phys. Rev. D17 

(1978) 3090, E. Eichen et al., Phys. Rev. D21 (1980) 203 and  S. Godfrey et al., Phys. Rev. D 32 

(1985) 189]. In calculation of bottomonium states, a non-relativistic potential model will use with 

the screening effect. The potential is described as 
 

V(r) = Vv(r) + Vs(r)      (1) 

where, 

Vv(r) = −
4

3

αc

r
,    (2) 

Vs(r) =
b(1 − e−μr)

μ
.    (3) 

Here, Vv(r) represents the vector-like one-gluon exchange potential, C is the coefficient of the 

Coulomb potential and  is the screening factor which makes the long- range scalar potential of 

VS(r) behave like “br” when 𝑟 ≪
1

𝜇
, and become a constant b/ when𝑟 ≫

1

𝜇
. The main effect of the 

screened potential on the spectrum is that the masses of the higher excited states are lowered. 

Vector potential VV (r), scalar potential VS (r), and vector potential VV (r) plus scalar potential 

VS(r) are shown in Fig. 2, 3 and 4 respectively. The screening effect is very important to describe 

the higher excited states. In calculation, spin-dependent potentials include as follows: 

(i) the spin-spin contact hyperfine potential 

HSS =
32παc

9mb
2 (

σ

√π
)
3

e−σ2r2 S⃗ b. S⃗ b̅    (4) 

where S⃗ band S⃗ b̅ are spin matrices acting on the spins of the quark and antiquark.  

In the |2S+1LJ⟩  basis, the matrix element for the spin-spin operator S⃗ b. S⃗ b̅is 

〈S⃗ b. S⃗ b̅〉 =
1

2
S(S + 1) −

3

4
.      (5) 
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(ii) the spin-orbit term, 

HSL =
1

2mb
2r

(3
dVv

dr
−

dVS

dr
) L⃗ . S⃗      (6) 

       =
1

2mb
2r

(4
αc

r2
− be−μr) L⃗ . S⃗  

    (7) 

The matrix element of the spin-orbit operator is 

〈L⃗ . S⃗ 〉 =
1

2
[J(J + 1) − L(L + 1) − S(S + 1),    (8) 

where, L is the orbital angular momentum quantum number, S is the spin quantum number 

and J = L ± S is the total angular momentum quantum number. [W. Deng, etal., Phys. Rev. 

D95 (2017) 074002] 

(iii) the tensor term, 

HT =
1

12mb
2 (

1

r

dVv

dr
−

d2Vv

dr2
) S⃗ T.   (9) 

The element of the tensor operator ST is 

ST = 4 〈S⃗ 2L⃗ 2 −
3

2
L⃗ . S⃗ − 3(L⃗ . S⃗ )

2
〉.   (10) 

 

 

Figure 2 Vector potential VV (r) in GeV with the distance r in fm 

 

Figure 3 Scalar potential VS (r) in GeV with the distance r in fm 
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Figure 4 Vector potential VV (r) plus scalar potential VS (r) 
 

Energy Levels of Bottomonium 

 Energy levels of the bottomonium are determined by solving Schrödinger equation with 

Numerov method. To obtain energy (masses) and wave functions of the bottomonium states, this 

radial equation need to solve.  

d2u(r)

dr2
+

2μ

ℏ2
[E − Vbb̅(r) −

ℏ2ℓ(ℓ + 1)

2μr2
] u(r) = 0       (11) 

where, 

μ =
mbmb̅

mb + mb̅

       (12) 

  is the reduced mass of the system and E is the binding energy of the system. Then, the mass of 

a bb̅ state is obtained by Mbb̅ = 2mb + E. In this calculation, screened potential model with spin-

spin term, spin-orbit term and tensor term described as the following equation,  

Vbb̅(r) = V(r) + HSS + HSL + HT.      (13) 

Therefore, our potential form is 

Vbb̅(r) = −
4

3

αc

r
+

b(1 − e−μr)

μ
+

32παc

9mb
2 (

σ

√π
)
3

e−σ2r2 S⃗ b. S⃗ b̅

+
1

2mb
2r

(4
αc

r2
− be−μr) L⃗ . S⃗ +

1

12mb
2 (

1

r

dVv

dr
−

d2Vv

dr2
) S⃗ T. 

 

 

  (14) 

We calculated energy eigenvalues and the corresponding eigenfunctions by using numerical 

Numerov method in FORTRAN programming. 
 

Results and Discussion  

Energy Search for Bottomonium States 

 The Schrödinger equation has been solved with screen potential model including spin-orbit 

term and tensor term to obtain the energy levels of all bottomonium states. The angular momentum 

states S, P, D and F (L = 0, 1, 2 and 3) have been calculated. 
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Orbital Angular Momentum S (L = 0) States 

 Orbital angular momentum L = 0 states with spin singlet and triplet states are calculated 

by solving the Schrödinger equation with Numerov (Difference) numerical method. Our calculated 

masses of S-states are in good agreement with those found in literatures. The corresponding 

reduced radial wavefunction of bottomonium singlet and triplet states (5S, 6S) are expressed in 

Fig. 5 and 6. The comparison between the experimental data and our calculated masses of 

bottomonium for S states is shown in Table (1). 

Higher Orbital Angular Momentum States (L =1, 2 and 3)  

 In this section, we explain the calculation of higher angular momentum states P, D and F 

which are L = 1, 2 and 3 by using the same procedure as that of S state calculation. We calculated 

the energy eigenvalues and eigenfunctions of higher orbital angular momentum states for principle 

quantum numbers n = 1, 2 and 3. 

 For these states the spin-orbit term is to be included and the term 1/r3 appears in the 

potential. Accordingly, when r  → 0 the wavefunction near the origin does not obey the relation            

u (r → 0)  r L+1. In order to overcome this problem, it is assumed that in a small range r  (0, rc), 

the Vbb̅ (r)  1 / (rc)
3, which is a finite constant where rc is a cut off distance. For the model 

parameters, we take C = 0.37, b = 0.210 GeV2,  =  GeV, mb = 4.760 GeV and                        

 = 3.10 GeV. In our calculation, the cutoff distance rc = 0.06 fm is adopted. With this cutoff 

distance rc, the energy levels of the higher orbital states (L = 1, 2, 3) are in good agreement with 

the experimental data and the predicted masses of bottomonium [W. Deng, et al., Phys. Rev. D95 

(2017) 074002]. The comparison results are listed in Table (2) and (3). The reduced radial 

wavefunction of some bottomonium states are shown in Fig. 7-11. The experimental data and our 

calculated masses of bottomonium are shown in Fig. 13. 

 

        

 

 

 

 

 

 

 

 

 

 

Figure 5 Reduced radial wavefunciton of 

bottomonium for singlet 5S and 

6S state 
 

Figure 6 Reduced radial wavefunciton of 

bottomonium for triplet 5S and 6S 

state 
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Table 1 Comparison between the experimental data [PDG], predicted values [W. Deng, etal.,] 

and our calculated masses of bottomonium for S states 

n2S+1LJ State JPC 
Bottomonium masses (MeV) 

[PDG] Predicted Values  Our Calculated 

Results 
13S1 (1S) 1-- 9460 9460 9465.52 

11S0 b(1S) 0-+ 9398 9390 9393.59 

23S1 (2S) 1-- 10023 10015 10025.28 

21S0 b(2S) 0-+ 9999 9990 9999.46 

33S1 (3S) 1-- 10355 10343 10354.65 

31S0 b(3S) 0-+  10326 10337.21 

43S1 (4S) 1-- 10579 10577 10609.26 

41S0 b(4S) 0-+  10584 10595.65 

53S1 (5S) 1-- 10865 10811 10822.46 

51S0 b(5S) 0-+  10800 10811.18 

63S1 (6S) 1-- 11020 10997 11007.88 

61S0 b(6S) 0-+  10988 10998.20 
 

Table 2 Comparison between the experimental data [PDG], predicted values [W. Deng, etal.,] 

and our calculated masses of bottomonium for P states 

n2S+1LJ State JPC 
Bottomonium masses (MeV) 

[PDG] Predicted Values Our Calculated Results 

13P2 b2(1P) 2++ 9912 9921 9934.50 

13P1 b1(1P) 1++ 9893 9903 9903.95 

13P0 b0(1P) 0++ 9859 9864 9883.80 

11P1 hb(1P) 1+- 9899 9909 9918.64 

23P2 b2(2P) 2++ 10269 10264 10277.84 

23P1 b1(2P) 1++ 10255 10249 10254.65 

23P0 b0(2P) 0++ 10233 10220 10239.54 

21P1 hb(2P) 1+- 10260 10254 10265.23 

33P2 b2(3P) 2++  10528 10541.79 

33P1 b1(3P) 1++ 10516 10515 10522.23 

33P0 b0(3P) 0++  10490 10509.60 

31P1 hb(3P) 1+-  10519 10530.86 
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Table 3 Comparison between the experimental data [PDG], predicted values [W. Deng, etal.,] 

and calculated masses of bottomonium for D and F states 

n2S+1LJ State JPC 
Bottomonium masses (MeV) 

[PDG] Predicted Values Our Calculated Results 

13D3 3(1D) 3--  10157 10172.25 

13D2 2(1D) 2-- 10164 10153 10161.68 

13D1 1(1D) 1--  10146 10153.99 

11D2 b2(1D) 2-+  10153 10165.27 

23D3 3(2D) 3--  10436 10450.98 

23D2 2(2D) 2--  10432 10441.71 

23D1 1(2D) 1--  10425 10434.87 

21D2 b2(2D) 2-+  10432 10444.84 

11F3 hb3(1F) 3+-  10339 10352.07 

13F4 b4(1F) 4++  10340 10356.45 

13F3 b3(1F) 3++  10340 10350.58 

13F2 b2(1F) 2++  10338 10346.00 
  

        

 

 

      

 

 

 

Figure 7 Reduced radial wavefunciton of 

bottomonium for singlet 1P, 2P 

and 3P states 
 

Figure 8 Reduced radial wavefunciton of 

bottomonium for triplet 1P, 2P 

and 3P(j = 0) states 
 

Figure 9 Reduced radial wavefunciton of 

bottomonium for singlet 1P, 2P 

and 3P (j = 1) states 
 

Figure 10 Reduced radial wavefunciton of 

bottomonium for triplet 1P, 2P 

and 3P(j = 2) states 
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Figure 13 Masses of bottomonium where solid lines represent the experimental data and dashed 

lines the calculated ones 

 

 

Figure 11 Reduced radial wavefunciton of 

bottomonium for singlet 1D and 

2D states 
 

Figure 12 Reduced radial wavefunciton of 

bottomonium for singlet 1F state 
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Conclusion 

 The masses of bottomonium states have been calculated in the non-relativistic screened 

potential model. Although the mass differences between the experimental data and our calculated 

values are 1 - 5 MeV for 1S, 2S and 3S states, 10 - 25 MeV for 1P state and 1 - 8 MeV for 2P, 3P 

and 1D states, our results for the bottomonium spectrum are in good agreement with the 

experimental data and the predicted values [K. A. Olive et al., Particle Data Group Collaboration, 

Review of Particle Physics, Chin. Phys. C 38, (2014) and W. Deng, et al., Phys. Rev. D95 (2017) 

074002]. Therefore, our calculated results would be reasonable for determining the energy levels 

of bottomonium. 
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