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Abstract 

Attempts have been made to explore the physical properties of black hole mechanics such as 

Killing equation and Killing vector fields and its applications to Minkowski spacetime, static 

spacetimes and spherically symmetric spacetimes.  As the situation dictates, Mathematica software 

is used to utilized for detailed computations and visualization of the results. 
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Introduction 

The Lie derivative evaluates the change of a tensor field, along the flow defined by 

another vector field. This change is coordinate invariant and therefore the Lie derivative is 

defined on any differentiable manifold.  Functions, tensor fields and forms can be differentiated 

with respect to a vector field.  

Killing fields are the infinitesimal generators of isometries; that is, flows generated by 

Killing fields are continuous isometries of the manifold. More simply, the flow generates a 

symmetry, in the sense that moving each point on an object the same distance in the direction of 

the Killing vector field will not distort distances on the object. 

The Lie Derivative 

With or without the covariant derivative, which requires a connection on all of spacetime, 

there is another sort of derivation called the Lie derivative, which requires only a curve. 

Let C : R → M be a curve in M with tangent vectors, 
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The Lie derivative generalizes the directional derivative of a function, 
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to higher rank tensors. First, consider a vector field, v , defined on M. One defines the Lie 

derivative of v  at a point P along C to be 
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where )( Pv is the Lie transport of v  along the curve. For simplicity, let P = C (λ = 0). Lie 

transport involves taking the value of the vector field at a point on C, say, v (λ), and performing a 
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coordinate transformation to bring the point C (λ) back to P = C (0) (Adler.R, Bazin.M, 

Schiffer.M, 1975). The coordinate transformation one require is, for infinitesimal   , 
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The derivative is then 
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An easy proof of the covariance of this result is that it equals the commutator of the two vectors, 

   )9(],[ vvL    

which has the same form when ξ and v are expanded in components, 
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The generalization to higher rank tensors is immediate because derivations must satisfy the 

Leibnitz rule ( Hawking S.W, Ellis G.F.R, 1973) .Thus, for an outer product of two vectors, 
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one has 
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and so on for higher ranks, with one correction term, vT 
  ...... , for each index . 

 For forms, one uses the directional derivative of a scalar, 
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Since this must hold for all v , 

      )18(



   wwwL  

Symmetries of Minkowski spacetime  

Consider flat spacetime, for which the metric is Minkowski,  . In Cartesian coordinates,  

     

  
 

 
 

                                                         

and the Christoffel connection vanishes, 0 
 . Then one may replace the covariant 

derivatives by partial derivatives, and the Killing equation is simply 

             )20(0,,     

Taking a further derivative, one has  
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Now, cycle the indices twice, to give 
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so that the second derivative of  vanishes. This means that  must be linear in the coordinates, 
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Substituting this into the Killing equation, 
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so that a is arbitrary while b must be antisymmetric. One therefore finds exactly 10 isometries 

in Minkowski space. This is the maximum number of independent solutions to the Killing 

equation. The static, spherically symmetric Schwarzschild solution had one timelike Killing field 

and three spatial rotational Killing fields for a total of three. A generic spacetime has no 

isometries (Schutz. B. F, 2009). 

 

Static, Spherically Symmetric Spacetimes 

One may now say what one means by a static, spherically symmetric spacetime. To be 

static, there must be a timelike Killing vector field; to be spherically symmetric, one require a full 

set of three rotational (hence spacelike) Killing vectors. one use the Lie derivative to say restrict 

the form of the metric for a static, spherically symmetric spacetime. If one want a statics 

spacetime, it means that one want there to exist a timelike Killing vector field. Choosing the time 

coordinate to be the parameter t = λ, the symmetry condition becomes 
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However, with        , the components of ξ are constant, so that 

   
                                                                                                 

Therefore, 

                                                                                                                                         

                                             
 

  
       

and we have a coordinates system in which the metric is independent of the time coordinate. 

 For the spherical symmetry, we know that we have three rotational Killing vector fields which 

together generate SO(3). We can pick two of these for coordinates, but they will not commute 

with one another, so the metric will not be independent of both coordinates. Starting with the 

familiar form 
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is a Killing vector. To describe a second direction, we want a linear combination of the remaining 

two rotations, 
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To get zero, one can take 
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We may therefore take two of the Killing vectors to be 

                                                                        
 

  
                                                                                  

                                                                     
 

  
                                                                                    

giving two coordinates,      corresponding to symmetry directions. Since these do not commute, 

the metric cannot be independent of both. 

 

Static, Spherically Symmetric Spacetimes 

One may now say what one means by a static, spherically symmetric spacetime. To be 

static, there must be a timelike Killing vector field; to be spherically symmetric, one require a full 

set of three rotational (hence spacelike) Killing vectors. one use the Lie derivative to say restrict 

the form of the metric for a static, spherically symmetric spacetime. If one want a statics 

spacetime, it means that one want there to exist a timelike Killing vector field. Choosing the time 

coordinate to be the parameter t = λ, the symmetry condition becomes 
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and we have a coordinates system in which the metric is independent of the time coordinate. 

  For the spherical symmetry, we know that we have three rotational Killing vector fields 

which together generate SO(3). We can pick two of these for coordinates, but they will not 

commute with one another, so the metric will not be independent of both coordinates. Starting 
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Compare  
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giving two coordinates,      corresponding to symmetry directions. Since these do not commute, 

the metric cannot be independent of both. 
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Figure 1 The typical visualization of the gradient of a vector field    

 

 

Figure 2 The typical visualization of the gradient of a vector field    
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Figure 3 The typical visualization of the gradient of a vector field    

Concluding Remarks 

In this paper, attempts have been made to explore the interesting physical properties of 

spacetimes structure. Lie derivative , Killing field equations and utilizations of these are also 

been presented. The symmetry of Minkowki spacetimes, static spacetimes and spherically 

symmetric spacetimes have been analyzed. The symmetry nature of the vectors fields are 

visualized  with Stream Density Plot  by using Mathematica. 
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