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INVESTIGATION OF NUCLEON SINGLE-PARTICLE ENERGY LEVELS 

IN 90
Zr USING NUMEROV METHOD  
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Abstract 

In this research work, nucleons single-particle energy levels of 90Zr  have been investigated by 

solving non-relativistic Schrödinger equation within the framework of Numerov method. In this 

calculation, phenomenological Wood-Saxon potential has been applied and Coulomb interaction is 

taken into account for proton state investigation. Due to the effect of Coulomb repulsion the single-

particle energy levels of proton is higher than neutron. Moreover, 90Zr permits the application of 

Hartree-Fock Random Phase Approximation RPA based Skyrme effective nucleon-nucleon 

interaction KDE0v1, BsK1, SIII, SVII and SGOI. So, the calculated results were compared with two 

set parameters of Skyrme interaction: BsK1, SVII and available experimental data. The results were 

agreed with these two parameters and experimental data. 
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 Introduction 

The understanding of nuclear structure and energy levels of nuclei is important because it 

make an effort to study strong nuclear interaction between the nucleons that form a nucleus. The 

single-particle energies of a nucleon in the potential of the core, provide severe tests of nuclear 

model. The nuclear models are restored to find a wide range of nuclear properties and many nuclear 

models such as Fermi gas model, liquid drop model, single-particle shell model and cluster model 

have been introduced. Among them the single-particle shell model is one of the most essential 

models in order to make predictions and extrapolations for the properties of nuclei even further 

from stability (A. Signoracci and B. Alex Brown, 2007). 

90Zr is one of the medium mass nuclei with doubly closed shells where the number of 

neutrons is unequal to the number of protons. The nucleon single-particle energy levels of this 

nucleus can be investigated by using a self-consistent spherical Hartree-Fock HF method and 

Random Phase Approximation RPA with five different Skyrme type effective nucleon-nucleon 

interaction: KDE0v1, BsK1, SIII, SVII and SGOI. In the present work, we investigate single-

particle energy levels of 90Zr  within the shell model approach using numerov method and 

compared with two sets parameters of Skyrme type effective nucleon-nucleon interaction BsK1, 

SVII and the available experimental data. 

 

Numerov Method 

Numerov method is a numerical method to solve second order differential equations. In this 

research work, the nucleon single-particle energies of Zr have been investigated within the 

framework of shell model approach and one body Schrödinger radial equation will be applied. 

The Schrödinger radial equation can be represented by 
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where ( ) nlu r r R is reduced radial wave function. A regular solution near the origin is 

( ) 10 lu r r +→ →  and asymptotic solution is ( ) ( )
2ru r u r e −→ → = where  is a constant. Now 

the Schrödinger equation becomes 

( )
( ) ( )

2

2
0

d u r
k r u r

d r
+ =          (2) 

where ( ) ( )
( )2

2 2

12

2

l l
k r E V r

r





+ 
 − − 

 

h

h
is the kernel of the equation, μ is mass of nucleon 

single particle and ( )V r is single nucleon potential. E.q (2) can be solved by means of Numerov 

Algorithm. In this method, the range (r) is split into N points according to the formula 1n nr r h+= +  

where h is the step. Then the wave function and kernel of the equation become 

( ) ( )1n n nu u r u r h− = + and ( ) ( )1n n nk k r k r h− = + . By using Taylor series, the reduced radial 

wave function ( )u r  can be expand as 
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By adding Eq. (3) and (4), we get 
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Similarly for the wave function with second-order derivative, 
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According to the same operation of Eq. (3) and (4), we get   
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Substituting Eq. (8) into (5), we get the following forward recursive relation nu and backward 

recursive relation 1nu − to find the wave function. 
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To find the wave function by using these forward-backward technique, it is necessary to 

give two initial values for each direction and the first derivative wave function is 
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Since both outward and inward wave functions ( )outu r and ( )inu r satisfy homogeneous 

equation, their normalization can always be chosen so that they are set to be equal at the match 

point 
cr . At that point the eigen functions must satisfy the following continuity conditions 

( ) ( ) ( ) ( ),
c c c c
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u u u u = =                (12) 

A function ( )G E can be defined at 
cr point whose zeros correspond to the energy 

eigenvalues as 
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Now we proceed numerically in the following way: firstly, we set a trial energy as an input 

at 0r = and this energy is increased by the formula 
nE E E= + where E  is energy step within 

the N points. Then the eigen functions of 
outu and 

inu for each 
nE  can be calculated at 

cr point and 

build the ( )G E function. In this function, we carefully looked for and checked a change of sign 

and then perform a fine tuning closing the energy range until the required tolerance. If the value of 

this function is zero or close to zero, the correct energy eigen value and corresponding eigen 

function can be obtained simultaneously. 

 

Normalized Wave Function 

In order to investigate the properties of nucleon single-particle states, the two wave functions 

must be taken in normalization condition. The eigen functions of  ( )outu r  and ( )inu r obtained from 

the recursive formulas can be written as 

( ) ( )outu r A r=  ,  ( ) ( )inu r B I r=                (14) 

where A and B are constants and their derivatives also become 

( ) ( )outu r A r =  , ( ) ( )inu r B I r =                (15) 

By substituting Eq. (14) and (15) in Eq. (12), we get 
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and taking the difference of above equations, we obtain 
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, where cf  is a 

scaling factor and this equation relates between constant A and B. We have already got outwards 

wave function ( ) and inward wave function ( )I from the recursive formulas. After taking their 

derivative, we can find the constant value A. After obtaining the value of constant A , the value of 

constant B can be acquired. So Eq. (15) can be represented as 

( ) ( )out cu r f B r=  ,     ( ) ( )inu r B I r=                (17) 

where B is a global factor and it must be taken into account in the normalization process. Then the 

normalized constant B can be obtained by using the following normalization conditions  
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Then the normalized outwards and inwards eigen functions becomes  
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Interaction 

I. Woods-Saxon potential 

The Woods-Saxon potential is the sum of a spin-independent central potential, a spin-orbit 

potential and the Coulomb potential: 
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( )soV r = spin-orbit potential 
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Parameters 

0 153
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−
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1 030 MeV, 22 MeV, 1.25 fm, 0.65 fmsoV V r a=− = = =  

             

                       Figure (1) Woods-Saxon potential with spin-orbit for 90Zr  

II. Derivation of Spin-orbit Interaction 

Woods-Saxon central potential does not have any energy level splitting and so spin-orbit 

interaction is used to get energy level splitting. Woods-Saxon potential with spin-orbit coupling 

term is represented as follows. 
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The spin-orbit term with the scalar product of the orbital angular momentum operator L and the 

intrinsic operator S, can be represented by using the total angular momentum. 
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The magnitude of the total angular momentum, the orbital angular momentum and the spin angular 

momentum are 
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There are two possible conditions such as 
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If 
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2
j = −l , Eq. (24) becomes 
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The spin orbit interaction term of Eq. (33) and (34) are substituted in Eq. (19) then we get 
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Results and Discussions 

Firstly, the proton single-particle energies of 90Zr  for various states such as s, p, d and f 

states of 
1

2
+l case and 

1

2
−l  case were calculated by using phenomenological Woods-Saxon 

potential and the calculated results are shown in Fig. (2) and (3). 

       

                                    (a)                          (b) 

Figure (2) (a) Proton wave functions ( )1
2

+l case for 
1/2 3/2 5/2 7/21s ,1p ,1d ,1f  states      

  (b) Proton wave functions ( )1
2

+l case for 
1/2 3/2 5/2 7/22s ,2p ,2d ,2f states 

        

Figure (3) (a) Proton wave functions ( )1
2

−l case for 
1/2 3/2 5/21p ,1d ,1f states        

(b) Proton wave functions ( )1
2

−l case for 
1/2 3/22p ,2d states 
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Fig. (2) and (3) show the calculated results of various s states, p states and d states proton wave 

functions with phenomenological Woods-Saxon potential for 90Zr . The wave functions are shifted 

to outer region for higher orbital angular momentum and it is seen that all wave functions are finite. 

There is no node in 1s, 1p, 1d and 1f states and one node in 2s, 2p, 2d and 2f states of both ( )1
2

+l

and ( )1
2

−l cases. Similarly, the neutron single-particle energies of 90Zr in various states were 

obtained in the same way. But neutron is a chargeless particle so Coulomb potential are not taken 

into account in this calculation. Then the calculated results are shown in Figure (4) and (5). 

        

Figure (4) (a) Neutron wave functions ( )1
2

+l  case for 
1/2 3/2 5/2 7/21s ,1p ,1d ,1f states       

(b) Neutron wave functions ( )1
2

+l case for 
1/2 3/2 5/2 7/22s ,2p ,2d ,2f states 

       

Figure (5) (a) Neutron wave functions ( )1
2

−l case for 
1/2 3/2 5/21p ,1d ,1f states        

(b) Neutron wave functions ( )1
2

−l case for 
1/2 3/2 5/22p ,2d ,2f states 

Figure (6) (a) and (b) shows energy levels for proton and neutron state for ( )1
2

+l and ( )1
2

−l

cases. According to this figure, 1s state has the largest binding energy among the other states. If 

the nucleon is in the innermost shell of the nucleus, it will have largest binding energy and 

gradually decreases with shell level ordering. 

Finally, the calculated results were compared with two sets parameters of Skyrme type 

effective nucleon-nucleon interaction BsK1, SVIII and the available experimental data in Table 

(1) and (2). The results were agreed with these two theoretical and experimental results. 
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                                       (a)       (b)  

Figure (6) (a) Proton single-particle energy levels for ( )1
2

+l case and ( )1
2

−l case        

(b) Neutron single-particle energy levels for ( )1
2

+l case and ( )1
2

−l case 

Table 1 Comparison of experimental results, Skyrme type interaction based two set 

parameters and our calculated results for proton single-particle energies in 90
Zr  

Subshell Exp 

Skyrme type effective 

nucleon-nucleon interaction Our calculated results 

BsK1 SVIII 

1/21s
 

43 8  33.02 32.44 32.36 

1/22s
 - 16.78 16.58 15.84 

3/21p
 

35 8  27.17 27.72 25.51 

3/22p
 - 8.79 8.02 7.92 

5/21d
 

27 8  21.27 21.72 19.21 

5/22d
 - - - 7.22 

7/21f
 - 14.47 14.70 15.32 

7/22f
 - - - 2.93 

1/21p
 

33 8  24.45 26.29 24.80 

1/22p
 - 7.21 6.58 8.30 

3/21d
 

26 8  17.63 18.66 16.69 

3/22d  - - - 4.43 

5/21f
 - 8.65 9.65 8.53 
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Table 2 Comparison of experimental results, Skyrme type interaction based two set 

parameters and our calculated results for neutron single-particle energies in 90
Zr  

Subshell Exp 

Skyrme type effective 

nucleon-nucleon interaction Our calculated results 

BsK1 SVIII 

1/21s
 - 45.31 43.78 45.51 

1/22s
 - 27.85 27.54 28.14 

3/21p
 - 39.19 37.94 38.90 

3/22p
 15.10 15.78 15.17 15.01 

5/21d
 - 30.37 30.27 31.17 

5/22d
 - 8.71 8.74 9.30 

7/21f
 - 22.00 21.95 22.62 

7/22f
 - - - 13.81 

1/21p
 - 38.27 37.81 38.13 

1/22p
 13.60 14.87 14.52 14.91 

3/21d
 - 28.98 28.48 29.5 

3/22d  - 7.11 7.40 7.42 

5/21f
 18.50 19.19 18.98 19.81 

5/22f  - - - 9.83 
 

Conclusion 

In this paper, the nucleon wave functions and their single-particle energy levels in 90Zr
were investigated by solving one-body Schrödinger equation within the frame work of numerov 

method. The results of all of wave functions were found to be convergent. In this investigation, 

phenomenological Woods-Saxon central potential including spin-orbit interaction was used. The 

numerical calculation was solved by using FORTRAN-90 code. Then the calculated results were 

compared with two set parameters of Skyrme type based nucleon-nucleon interaction and available 

experimental results. As a result, the calculated shell structures of nucleon single-particle energies 

were agreed with both theoretical and experimental results. Therefore, numerov method is reliable 

for investigation of single-particle energy of nuclei and our program code is also reliable to use 

one body potential form. 
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