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LAMBDA SINGLE-PARTICLE ENERGY LEVELS IN La139

  

BY USING NUMEROV METHOD 
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Abstract 

In this research paper, the  single particle energies and radial wave functions of La139


 have been 

investigated, by solving numerically Schrödinger equation with Numerov Method. The 

phenomenological Woods-Saxon central potential and Woods-Saxon potential including spin orbit 

term are used in this calculation. The root-mean square distances between  and core nucleus La139

  
were calculated with normalized wave function. In this calculation,  single particle energy levels 

of La139


 are 1s1/2, 1p1/2, 1p3/2, 1d3/2, 1d5/2, 1f5/2, 1f7/2, 1g9/2, 2s1/2, 2p1/2, 2p3/2. This calculated results 

are agree with H.Bando calculated results and slightly different from experimental results. 

              Keywords:  Numerov method, Behaviour of wave functions and energy levels, Lambda hyper nuclei. 

  

 Introduction 

Hyperon and Hypernucleus  

Hyperons are special class of baryons and consisting of one or more strange quarks. All 

hyperons are fermions and they have half-integer spin. Hyperons are unstable particles and heavier 

than nucleons. They have the life time of the order of 10-10s and they decay weakly into nucleons 

and light particles such as -mesons, electrons and neutrinos. Their formation time is 10-23s which 

is typical for strong interaction. 

Various types of hyperons are lambda (0), sigma ( -, 0, + ), xi (  -, 0 ) and omega 

(). All hyperons have a spin of (1/2), but omega has a spin of (3/2). The  hyperon is an isospin 

singlet of strangeness -1. The  hyperon occurs as an isospin triplet of baryons -, 0, + and they 

have strangeness -1. The cascade particles xi (  -, 0 ) have strangeness -2. The omega-minus () 

is strangeness -3 because it is composed of three strange quarks. 

The lambda hyperon 0 was firstly discovered in October 1950, by V.D.Hopper and S. 

Biswas of the University of Melbourne, as a neutral V particle with a proton as decay product, thus 

correctly distinguishing it as a baryon.  hyperon is the lightest particle and it can s1tay in contact 

with nucleons inside the nucleus and form lambda-hypernucleus. It has zero charge, zero isospin, 

the strangeness number -1 and the value of mass 1115.684  0.006 MeV/c2.  hyperon is composed 

of three quarks; (uds). 

In today’s nuclear physics, new nuclei or nuclear matter have been searched for along new 

axes such as isospin, spin and new flavor, namely strangeness. In the strangeness nuclear physics, 

new nuclei which has strangeness quantum number has been produced to study its structure and 

hence to gain information about nuclear force with strangeness. A hypernucleus consists of one or 

more hyperons bound to a nuclear core in addition to nucleon. The first hypernucleus was 

discovered in Warsaw in September 1952 by Marian Danysz and Jerzy Pniewski. The first 

hypernucleus was discovered in nuclear emulsion experiments as a fragment from the nuclear 

reaction by cosmic ray. A -hypernucleus X

 is a bound state of Z protons, (A-Z-1) neutrons and 

a -hyperon. 
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Interactions 

In research paper, we use the phenomenological -nucleus potential which has the Woods-

Saxon form as in equation (1). 
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where,  V0=depth of the potential well 

            A=mass number of the core nucleus 

                        Vs=strength of Woods-Saxon potential 

                         R=radius of the core nucleus 

                         a =the diffuseness parameter 

Phenomenological Woods-Saxon Potential For-Core Nucleus 

In this calculation, we considered that a  moves freely in an average potential well 

generated by the other nucleus. To study the single-particle energy level of La139


, the 

phenomenological Woods-Saxon potential energies is used which is described by the following 

equation (2), 

(r)ρVV 0w.s                                                                                (2) 

where, V0 is the strength of Woods-Saxon potential and the nuclear density 
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Woods-Saxon potential together with spin-orbit interaction which is described as follows: 
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Woods-Saxon potential including spin-orbit interaction is 

(r)V(r)VV(r) .sw.s   

Thus, the potential becomes; 
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where, R=nuclear radius=r0A
1/3=1.1A1/3 fm 

            r = radial distance from the centre 

            a = diffuseness parameter=0.6fm 

           V0 = strength of Woods-Saxon potential 

           Vso = spin-orbit constant and 

         
cm
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= Compton wavelength 
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The chosen parameters for the potential strength Vso and V0 are 4MeV and 30 MeV. 

The scalar product of LS coupling is 
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If the potential is the phenomenological Woods-Saxon  
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Calculations 

Numerov Method 

 

The Schrodinger Radial Equation (SRE) is  
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where E is total energy of the system, V is the potential energy of the system due to the forces 

acting between the two nucleons,  is reduced mass and u(r)= r Rnl is the reduced radial wave 

function. 

At the origin: 1r0)(ru:(r)u    

The asymptotic solution at   ,e(r)u)(ru:r
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dr

(r)ud
2

2

                                      (9)   








 


2

2

2 r

1)(

2μ
(r)VE

2μ
(r)k




is kernel equation of the equation:  

Here (setting 0 ), Schrodinger’s Equation becomes (r)u(r)k(r)'u'
dr

(r)ud
2

2
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can be solved by Numerov Algorithm as follows: 

            Firstly, we split the r range into N points according to hrr 1nn     (where h is the step); 

then we write the wave function ,h)u(r)u(ru 1nnn   and   )h(rkrkk 1nnn   . 

By using Taylor’s series, we calculate the Forward Recursive Relation and Backward Recursive 

Relation,      
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Forward Recursive Relation, 
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Backward Recursive Relation, 
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Therefore, when we calculate our wave function using the backward-forward recursive technique, 

we should note that the recursive formulas imply having knowledge of two initial values for each 

direction. Since both (r)u out  and )(ru in  satisfy a homogeneous equation, their normalization can 

always be chosen so that they are set to be equal at the rc point. An energy eigen value is then 

signaled by the equality of derivatives at this point. 

             At the matching point the eigen functions (r)u out  and (r)u in and first derivatives (r)u out  

and (r)u in  must all satisfy the continuity conditions:  
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and then we define a G(E) function at whose value zeros correspond to the energy eigenvalues as  
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           Therefore, we proceed numerically in the following way: we set a trial energy range splitting 

this E range into N points, corresponding to where is the energy step. For each we calculate their 

eigenfunctions and at the point; and we build the G(E) function here, looking for a change of sign 

in it (which implies a zero cross). Once we find it, we perform a fine turning closing the energy 

range until the required tolerance. 

Root-mean square distance  

         Root-mean-square distance means the maximum probability distance between Lanthanum 

core nucleus and lambda particle. The root-mean square distance is evaluated by the following 

equation with the numerical calculated results of wave functions.  
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Results and Discussion 

              The  single-particle energies of La139


 and corresponding wave functions have been 

investigated by solving Numerically Schrodinger radial equation with Numerov Method. Numerov 

Method can be evaluated both energy eigen values and wave functions simultaneously. This method 

can be calculated both bound state problems and scattering problems. Bound state energies give 

negative values and Scattering gives positive values. In this paper, about the bound state energies 

have been calculated. And also calculated the radial wave functions and corresponding root mean 

square distances. Lambda single particle energy levels are summarized in Table 1.The 
calculated results of Binding energy with W-S potential without L-S term are shown in Table (2). 

The single-particle energy levels of La139


 is are 1s1/2, 1p1/2, 1p3/2, 1d3/2, 1d5/2, 1f5/2, 1f7/2, 1g9/2, 2s1/2, 

2p1/2, 2p3/2. The energy level diagrams for these  hypernuclei are in Figure (5). The calculated 

results by using Woods-Saxon potential including spin-orbit interaction are in good agreement with 

H.BANDO results and quite different from experimental results. To agree with experimental data, 

the calculations need to consider the additional potential such as spin-spin interaction, paring effect 

etc. 

Table (1)  BANDO calculated results, calculated results and experimental results with W-S  

                potential including L-S term. 

States 

H. BANDO 

Calculated 

Results 

Calculated Results 

(MeV) 

Experimenal 

results (MeV) 

Calculated 

RMS (fm) 

1s1/2 -24.7 -24.66 -24.5 0.6 1.6064 

1p1/2  -19.45 -20.4 0.6 1.911 

1p3/2 -19.7 -19.73  1.9277 

1d3/2  -13.39 -14.3 0.6 2.1484 

1d5/2 -14.1 -14.02  2.1745 

1f5/2  -6.635 -8.0 0.6 2.3703 

1f7/2 -7.8 -7.75  2.3936 

1g9/2 -1.2 -1.087  2.6239 

2s1/2  -12.06  2.0649 

2p1/2  -4.95  2.4016 

2p3/2 -5.4 -5.34  2.3955 

 

Table (2) The calculated results of Binding energy with W-S potential without L-S term. 

States  1s 1p 2p 1d 1f 

Calculated Results (MeV)  -24.658 -19.638 -5.209 -13.77 -7.265 

RMS (fm)  1.6066  1.9219  2.3975 2.1634  2.3844  
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Figure 1 Behaviour of wave function of Lambda in Woods-Sexon potential well for n = 1 state 

)( 139La  

 

 

Figure 2 Behaviour of wave function of Lambda in Woods-Sexon potential well for 1s1/2 state 

and 2s1/2 state )( 139La  
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Figure 3 Behaviour of wave function of Lambda in Woods-Sexon potential well for 
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Figure 4 Behaviour of wave function of Lambda in Woods-Sexon potential well for 2s1/2 state, 

2p3/2 state and 2p1/2 state )( 139La  
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Figure 5 Energy level diagram of  La139


 for Woods-Saxon potential with central term and Woods-

Saxon potential including spin orbit term.  
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Conclusion 

          The  hyperon does not suffer from Pauli blocking by the other nucleons, it can penetrate 

into the nuclear interior and form deeply bound hypernuclear states. There are no nodes for 

principal quantum number n = 1, one node for n = 2. The wave function is shifted to outer region 

for higher orbital angular momentum. The higher the orbital angular momentum, the higher the 

spacing between )(
2
1  and )(

2
1 . According to calculated results, there is no nuclear bound 

state above 1g9/2 state for La139

Λ system. After the research, the analytical and numerical 

calculation about the Numerov method have been known. And also, the behavior of wave functions, 

energy levels and the corresponding root mean square distances have been known.  
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