THEORETICAL ANALYSIS ON J-PARC E31 EXPERIMENT

Win Win Maw¹, Thida Wint², Khin Swe Myint³, Yoshinori Akaishi⁴, Toshimitsu Yamazaki⁵

Abstract

The research work is to analyze the missing mass and the invariant mass spectra of D (K⁻, n) Λ (1405) reaction process which was conducted at J-PARC E31 experiment with 1.0 GeV/c incident momentum of K⁻. This reaction is expected to enhance a virtual $\overline{K}N$ scattering process, where a K⁻ beam kicks a neutron out of the deuteron target in a forward angle and is slowing down to form a Λ (1405) with a residual nucleon. We have calculated the missing mass spectrum D(K⁻, n) Y reaction with Green's function method by using YA potential for $\overline{K}N$ interaction. We have also used the $\overline{K}N \rightarrow \pi\Sigma$ coupled channel Yukawa type separable potential to compute the invariant mass spectrum. We observed that the missing mass spectrum of the D (K⁻, n) Y reaction at a neutron forward angle has two peaks below the K⁻p threshold and above the threshold respectively. The former peak represents Λ (1405) state while the latter is a quasi-free K⁻p peak. We have analyzed the invariant mass spectrum of D(K⁻, n)($\Sigma\pi$)^{I-0}

where final state $\Sigma \pi$ is given in $|I = 0\rangle$ isospin basis. Our calculated invariant mass spectrum of $\Sigma \pi$ shows the prominent peak below the

threshold while quasi-free part is largely suppressed. We have also studied the invariant mass spectrum with final $\Sigma\pi$ charge states separately which are $\Sigma^{+}\pi^{-}$, $\Sigma^{-}\pi^{+}$, $\Sigma^{0}\pi^{-0}$

Key words: virtual $\overline{K}N$ scattering, missing mass spectrum, invariant mass spectrum.

Introduction

An antikaon (\overline{K}) and a nucleus may form a bound state (a kaonic nucleus), due to the strong attraction between \overline{K} and nucleon in an isospin I=0 state. $\Lambda(1405)$ resonance state is nominally accepted as a bound state of

¹ Assistant lecturer, Physics Department, Mandalay University, Mandalay, Myanmar

² Lecturer, Physics Department, Mandalay University, Mandalay, Myanmar

^{3.} Emeritus Professor, Physics Department, Mandalay University, Mandalay, Myanmar

⁴ Professor, Dr, College of Science and Technology, Nihon University, Chiba, Japan and RIKEN Nishina Center, Saitama, Japan

⁵ Professor, Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

K⁻p system which lies in the continuum region of $\pi\Sigma$, having strangeness S=-1, total charge Q=0, isospin I=0 and spin parity J^p=1/2⁻.

The updated PDG value of the mass and width of this Λ (1405) resonance state or often known as Λ^* is $1405.1^{+1.3}_{-1.0}$ MeV/c² and 50.5 ± 2.0 MeV (Particle Data Group K. A. Olive *et al.*, (2014)) with 27 MeV binding energy with respect to \overline{K} N threshold.

On the other hand, chiral unitary model claims that Λ (1405) may have two pole structure; one is mainly coupled to $\pi\Sigma$ state and the other is to \overline{K} N state which are located at different positions, (1390-132i) MeV and (1426-32i) MeV, respectively (T. Hyodo and A. Weise, (2008)). As a consequence, the resonance position of the Λ (1405) is 1420 MeV/c² and the binding energy is as shallow as 15 MeV.

The mass and width of Λ (1405).resonance were obtained to be 1400.5±4.0 MeV/c² and 50.0±2.0 MeV from production of Λ (1405) in K⁻p reactions at 4.2 GeV/c (R. J. Hemingway, (1985)) by Dalitz and Deloff (R. H. Dalitz and A. Deloff, (1991)). It is interpreted as a quasi-bound state of \overline{K} N coupled with continuum stat of $\pi\Sigma$.

Esmaili *et al.*, (J. Esmaili, Y. Akaishi and T. Yamazaki, (2010), (2011)) analyzed old bubble-chamber of stopped-K⁻ on ⁴He (B. Riley *et al.*, (1975)) with a resonance capture process, and found the best-fit value of mass and width for the Λ (1405) are 1405.1^{+1.3}_{-1.0} MeV/c² and 24.0^{+4.0}_{-3.0} MeV.

Maryam *et al.* (M. Hassanvand, Y. Akaishi, T. Yamazaki, (2015)) have calculated the $\Lambda(1405) \rightarrow (\pi\Sigma)^0$ invariant mass spectra produced in the reaction K⁻+ p $\rightarrow \Sigma^+(1660)$ + π^- , followed by $\Sigma^+(1660) \rightarrow \Lambda(1405) + \pi^+ \rightarrow \Sigma\pi + \pi^+$, processes at p(K⁻)=4.2 GeV/c.

Many experimentalists and theorists have studied the structure of Λ (1405) with different reactions by using various methods since nearly 1960's. But, the structure of Λ (1405) is still a controversial problem. So, H. Noumi *et al.*, proposed an experiment to study Λ (1405) via the D (K⁻, n) reaction at J-PARC (E31). In this experiment, missing mass and invariant-mass spectrum of D (K⁻, n) at a neutron forward angle were measured. We

analyzed both missing mass and the invariant-mass spectrum of D (K⁻, n) Λ (1405) reaction process with K⁻ momentum 1.0 GeV/c is incident upon the deuteron target.

Formulation of differential cross section for D (K⁻, n) Λ (1405)

The mathematical expression for spectral function is the most significant factor to determine the reaction cross-section. Therefore, we are going to determine the differential cross section and spectral function for D (K⁻, n) Λ (1405) reaction. The differential cross section is defined as the transition rate per incident flux.

$$d^{6}\sigma = \frac{L^{3}}{v_{0}} \frac{2\pi}{\hbar} \sum_{n} \delta(E_{i} - E_{f}^{(n)}) (\frac{L}{2\pi})^{3} d\vec{k}_{n} (\frac{L}{2\pi})^{3} d\vec{K} |T_{fi}^{(n)}|^{2}$$
(1)

Where, $\frac{L^3}{v_0}$ = incident flux, incident kaon velocity, $v_0 = \frac{\hbar k_0 c^2}{E_0}$,

 $\left(\frac{L}{2\pi}\right)^3 d\vec{k}_n \left(\frac{L}{2\pi}\right)^3 d\vec{K}$ is phase space, $\delta(E_i - E_f^n)$ is energy conservation

term and , T=transition operator.

We consider the elementary process of reaction is $K^- + D \rightarrow n + \Lambda(1405)$.

Figure 1. Schematic diagram of the reaction D (K^- , n) Λ (1405) reaction

Transition Matrix Element

We describe, transition matrix for D (K⁻, n) Λ (1405) reaction as follows, $T_{fi} = \langle \text{final state} | T | \text{initial state} \rangle$

$$T_{fi} = \left\langle \Psi_{f}^{n} \left(K^{-} p \right) \vec{K}, \vec{k}_{n} \middle| T \middle| \Psi_{i}(D), \vec{0}, \vec{k}_{0} \right\rangle$$
⁽²⁾

Where, $\Psi_f^n(K^-p)$ involves \vec{q}_2 and \vec{q}'_0 , $\Psi_i(D)$ involes \vec{q}_1 and \vec{q}_2 .

The transition matrix element can be expressed as follows;

$$\left|T_{\rm fi}^{(n)}\right|^{2} = \left|\int d\vec{q}_{\rm I} \left\langle \Psi_{\rm f}^{(n)}(K^{-}p) \middle| \vec{\tilde{q}} \right| \delta(\vec{K} + \vec{k}_{\rm n} - \vec{k}_{\rm 0}) \left[\vec{\tilde{q}}_{\rm 0}' \middle| t_{K^{-}n} \middle| \vec{\tilde{q}}_{\rm 0} \right] \left[\vec{q}_{\rm I} \middle| \Psi_{\rm i}(D) \right\rangle \right|^{2}$$
(3)

By substituting equation (4) into equation (1), and then we get,

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\cos(\theta)} = \frac{(2\pi)^{5}}{\hbar^{2}k_{0}c^{2}} \mathrm{E}_{0}k_{n}^{2}\mathrm{d}k_{n}\left|\left\langle \mathbf{t}_{\mathrm{K}^{-}n}\right\rangle\right|^{2} \times (-\frac{1}{\pi})\mathrm{Im}\int\mathrm{d}\vec{r}'\mathrm{d}\vec{r}f^{*}(\vec{r}')\left\langle \vec{r}' \left| \frac{1}{\mathrm{E}-\mathrm{H}_{\mathrm{K}^{-}p}+\mathrm{i}\epsilon} \right| \vec{r}\right\rangle f(\vec{r})$$

$$\tag{4}$$

Where, $\frac{(2\pi)^5}{\hbar^2 k_0 c^2} E_0 k_n^2 dk_n |\langle t_{K^- n} \rangle|^2$ is the kinematical factor and

$$(-\frac{1}{\pi}) \text{Im} \int d\vec{r}' d\vec{r} f^*(\vec{r}') \langle \vec{r}' \left| \frac{1}{E - H_{K^- p} + i\epsilon} \right| \vec{r} \rangle f(\vec{r}) \text{ is the spectral function } S(E).$$

In this spectral function equation, $\langle \vec{r}' \left| \frac{1}{E - H_{K^-p} + i\epsilon} \right| \vec{r} \rangle$ is the Green's

function.

Green's function can be expressed by coordinate representation

$$G(\vec{r}',\vec{r}) = \left\langle \vec{r}' \middle| \frac{1}{E - H_{K^-p} + i\epsilon} \middle| \vec{r} \right\rangle$$
(5)

(H_{K^-p} is Hamiltonian of $K^{\text{-}}$ and p nucleus or $K^{\text{-}}p$ system)

It is satisfies the following equation,

$$\left(\mathbf{E} - \mathbf{H}_{\mathbf{K}^{-}\mathbf{p}}\right)\mathbf{G}^{+}\left(\vec{\mathbf{r}}', \vec{\mathbf{r}}\right) = \left\langle \vec{\mathbf{r}}' | \mathbf{l} | \vec{\mathbf{r}} \right\rangle = \delta\left(\vec{\mathbf{r}}' - \vec{\mathbf{r}}\right)$$
(6)

Radial part of Green's function $G^+(r',r)$ satisfies the following equation,

$$[k^{2} + \frac{d^{2}}{dr^{2}} - \frac{\ell(\ell+1)}{r^{2}} - \widetilde{U}(r)]G_{\ell}^{+}(r',r) = \frac{2\mu}{\hbar^{2}}\delta(r'-r)$$
(7)
$$k = \sqrt{\frac{2\mu E}{\hbar^{2}}}, \widetilde{U}(r) = \frac{2\mu}{\hbar^{2}}V_{K^{-}p}(r)$$

Green's function $G_{\ell}^{+}(r',r)$ is divided into two regions $G_{\ell 1}^{+}(r',r)$ and $G_{\ell 2}^{++}(r',r)$ with,

$$\begin{split} G_{\ell_1}^+(\mathbf{r}',\mathbf{r}) &= C_1 u_{\ell}^{(0)}(\mathbf{r}) & \text{where, } \left(0 \langle \mathbf{r} \langle \mathbf{r}' \rangle \right) \\ G_{\ell_2}^{(+)}(\mathbf{r}',\mathbf{r}) &= C_1 u_{\ell}^{(+)}(\mathbf{r}) & \text{where, } \left(\mathbf{r}' \langle \mathbf{r} \langle \infty \rangle \right) \\ u_{\ell}^{(0)}(\mathbf{r}) \text{ and } u_{\ell}^{(+)}(\mathbf{r}) \text{ satisfies,} \\ [k^2 + \frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - \widetilde{U}(\mathbf{r})] u_{\ell}^{(0)}(\mathbf{r}) &= 0 \text{ with boundary condition } u_{\ell}^{(0)}(\mathbf{0}) &= \mathbf{0}. \\ [k^2 + \frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - \widetilde{U}(\mathbf{r})] u_{\ell}^{(1)}(\mathbf{r}) &= 0 \text{ with boundary condition } u_{\ell}^{(0)}(\mathbf{0}) &= \mathbf{0}. \\ [k^2 + \frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - \widetilde{U}(\mathbf{r})] u_{\ell}^{(1)}(\mathbf{r}) &= 0 \text{ with boundary condition } u_{\ell}^{(0)}(\mathbf{0}) &= \mathbf{0}. \end{split}$$

According to the continuity of Green's function,

$$C_{1}u_{\ell}^{(0)}(\mathbf{r})|_{\mathbf{r}'} = C_{2}u_{\ell}^{(+)}(\mathbf{r})|_{\mathbf{r}'}$$
(8)
Discontinuity of $\frac{\mathrm{d}G}{\mathrm{d}\mathbf{r}}$ gives

$$C_{1}u_{\ell}^{(0)'}(\mathbf{r})_{\mathbf{r}'} - C_{2}u_{\ell}^{(+)'}(\mathbf{r})_{\mathbf{r}'} = \frac{2\mu}{\hbar^{2}}$$
(9)

We have

$$\mathbf{G}_{\ell}^{(+)}(\vec{r}',\vec{r}) = \frac{2\mu}{\hbar^{2}} \sum_{\ell=0}^{\infty} \sum_{M} \mathbf{Y}_{\ell M}(\hat{\vec{r}}') \frac{\mathbf{u}_{\ell}^{(+)}(\mathbf{r}_{\ell}) \mathbf{u}_{\ell}^{(0)}(\mathbf{r}_{\ell})}{\mathbf{W}(\mathbf{u}_{\ell}^{(0)},\mathbf{u}_{\ell}^{(+)})} \mathbf{Y}^{*}_{\ell M}(\hat{\vec{r}})$$
(10)

The missing mass spectrum from this reaction is calculated by using Green's function method. It can express as follows;

$$\frac{d^{2}\sigma}{dYd\cos(\theta)} = \frac{(2\pi)^{5}}{\hbar^{4}k_{0}} E_{0}k_{n}^{2} \left| \left\langle t_{K^{-n}} \right\rangle \right|^{2} \frac{Y}{(1 + \frac{E_{Y}}{E_{n}})k_{n} - k_{0}\cos(\theta)} \\ \times \frac{2\mu}{\hbar^{2}} \left(\frac{-1}{\pi} \right) Im \left[\sum_{\ell} (2\ell + 1) \int dr dr' j_{\ell'}^{*} (Qr') u_{i}^{*}(r') \frac{u_{\ell}^{(+)}(r_{j})u_{\ell}^{(0)}(r_{\ell})}{W(u_{\ell}^{(0)}, u_{\ell}^{(+)})} j_{\ell}(Qr) u_{i}(r) \right]$$
(11)

Calculation of reaction cross-section with separable potential for $\Sigma \pi$ invariant- mass spectrum from D (K⁻, n) reaction

Figure 2. Schematic diagram of D (K^- , n) ($\Sigma \pi$)⁰ decay process

We can express transition matrix element and differential cross-section for $\Sigma \pi$ decay process as follows;

$$T_{\rm fi} = \left[\vec{k}_{\pi}, \vec{k}_{\Sigma}, \vec{k}_{n} \middle| T \middle| \vec{k}_{0}, \vec{0}, \psi_{i} \right)$$
(12)

$$d^{9}\sigma = \frac{L^{3}}{v_{0}}\frac{2\pi}{\hbar}\sum_{n}\delta(E_{i} - E_{f}^{(n)})(\frac{L}{2\pi})^{3}d\vec{k}_{n}(\frac{L}{2\pi})^{3}d\vec{K}(\frac{L}{2\pi})^{3}d\vec{k}|T_{fi}^{(n)}|^{2}$$
(13)

$$\frac{d^{2}\sigma}{dYc^{2}d\cos\theta_{n}} = 2\left(\frac{2\pi}{\hbar c}\right)^{6} \left|\left\langle t_{K^{-}n}\right\rangle\right|^{2} \frac{E_{0}}{k_{0}} \frac{k_{n}^{2}E_{Y}}{\left(1 + \frac{E_{Y}}{E_{n}}\right)k_{n} - k_{0}\cos\theta_{n}}$$
$$\times \left|F_{d}(Q)\right|^{2} \left|g(\widetilde{k})T_{21}(Y)\right|^{2} \frac{\widetilde{E}_{\pi}\widetilde{E}_{\Sigma}}{\widetilde{E}_{\pi} + \widetilde{E}_{\Sigma}}\widetilde{k}(Y)$$
(14)

In equation (2.3), T_{21} is the transition matrix element for $\overline{K}N - \Sigma \pi$ coupled-channel system. So, we have used the $\overline{K}N \rightarrow \pi \Sigma$ coupled channel Yukawa type separable potential to compute the invariant mass spectrum.

$\overline{K}N$ - $\Sigma\pi$ coupled-channel system

We treat the K⁻p quasi-bound state as a Feshbach resonance (H. Feshbach, Ann. Phys. (1958), (1962)) embedded in the $\Sigma\pi$ continuum by using Akaishi-Myint-Yamazaki's (AMY) phenomenological model. In the AMY model, we use a set of separable potentials with a Yukawa-type form factor for the coupled system of $\overline{K}N$ and $\Sigma\pi$ channels.

$$\langle \vec{k}_{i}' | v_{ij} | \vec{k}_{j} \rangle = g(\vec{k}_{i}') U_{ij} g(\vec{k}_{j}), \langle \tilde{\vec{k}} | t_{21} | \tilde{\vec{q}} \rangle = g(\tilde{\vec{k}}) T_{21}(Y) g(\tilde{\vec{q}})$$

$$g(\tilde{\vec{k}}) = \frac{\Lambda^{2}}{\Lambda^{2} + \tilde{\vec{k}}^{2}}, U_{ij} = \frac{1}{\pi^{2}} \frac{\hbar^{2}}{2\sqrt{\mu_{i}\mu_{j}}} \frac{1}{\Lambda} s_{ij}$$

Where, i (j) stands for the $\overline{K}N$ channel, 1, or the $\Sigma\pi$ channel, 2, μ_i (μ_j) is the reduced mass of channel i (j), and s_{ij} are non-dimensional strength parameters. Then, a complex potential with the following strength is derived analytically;

$$s_{1}^{opt}(E) = s_{11} - s_{12} \frac{\Lambda^{2}}{\left(\Lambda - i\kappa_{2}\right)^{2} + s_{22}\Lambda^{2}} s_{21}, E + \Delta Mc^{2} = \frac{\hbar^{2}}{2\mu_{2}}\kappa_{2}^{2}$$

 $\Delta M = m_{K^-} + M_p - m_{\pi^-} - M_{\Sigma^+} = 103 \, MeV/c^2 \quad is \ the \ threshold \ mass$ difference,

 κ_2 is a complex momentum in the $\Sigma\pi$ channel.

In this model, we use s_{22} =-0.66, which gives U_{22}/U_{11} =4/3 for Λ (1405) as in a "chiral model", and Λ =3.90/fm. In this mode, the loop integral is

$$\widetilde{G}(E) = \int d\vec{q}' d\vec{q} \frac{\Lambda^2}{\Lambda^2 + \vec{q}'^2} \left\langle \vec{q}' \left| \frac{1}{E - H + i\epsilon} \right| \vec{q} \right\rangle \frac{\Lambda^2}{\Lambda^2 + \vec{q}^2}$$

The transition –matrix of the two coupled channels, $\overline{K}N$ (1) and $\Sigma\pi$ (2), obeys the following equation;

$$\begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{21} \end{pmatrix} + \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{21} \end{pmatrix} \begin{pmatrix} G_1 & 0 \\ 0 & G_2 \end{pmatrix} \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{21} \end{pmatrix}$$

The solutions of each matrix are;

$$T_{ii} = \frac{1}{1 - U_{ii}^{opt}G_{i}} U_{ii}^{opt}, \quad T_{ji} = \frac{1}{1 - U_{jj}^{opt}G_{j}} U_{ji}^{opt}$$

The generalized optical potentials are;

$$U_{ii}^{opt} = U_{ii} + U_{ij} \frac{G_j}{1 - U_{jj}G_j} U_{ji}, \quad U_{ji}^{opt} = U_{ji} \frac{1}{1 - U_{ii}G_i}$$

It should be noticed that the two-channel coupled equation is divided into four single-channel effective equations without any approximation by the use of the optical potentials. The invariant mass spectrum from $K^- + D \rightarrow n + \Lambda(1405) \rightarrow n + (\Sigma\pi)^{(0)}$ is calculated by using separable potential.

Figure 3. Missing mass spectrum of Λ (1405) with different angular momentum. Red color dotted line represents the \overline{K} N threshold.

The calculated missing mass spectrum of the $D(K^-,n)$ reaction for various angular momentum distribution as shown in fig.(3). Here, we used the YA potential for K-P bound system with V_0 , W_0) = (-597.0 MeV-104.0 MeV). From the calculated missing mass spectrum, it can be seen that $\overline{K}N$ bound state is mainly contributed by L=0 while in continuum region, higher angular momentum contributions dominate. According to our analysis, the mass and width of Λ (1405) is about 1409.0 MeV/ C² and 47 MeV, respectively.

Invariant mass spectrum of $D(K^{-}, n)(\Sigma \pi)^{(I=0)}$ reaction

Figure (4) shows the $\Sigma\pi$ invariant mass spectrum with emitted neutron angles, $\theta_n=0^\circ$, 10° , 20° . We observe that the peak position in bound state region remain unchanged while the quasi-free peaks shift towards the higher mass region with an increase angle, θ_n . From the calculated invariant mass spectrum, the mass and width of Λ (1405) is about 1406.0 MeV/C² and 52 MeV, respectively. The value of mass and width of Λ (1405) which obtained from missing mass spectrum is nearly consistent that of $\Sigma\pi$ invariant mass spectrum.

Deuteron size effect upon the $\Sigma\pi$ invariant mass spectrum

We studied the deuteron size effect upon the $\Sigma\pi$ invariant mass spectrum by changing the size parameter 'a' of deuteron wave function, which is given by $\psi_i = \left(\frac{a}{2\pi}\right)^{\frac{3}{4}} e^{-\frac{1}{4}a\vec{r}^2}$, where smaller 'a' gives larger size. We have arbitrarily varied the deuteron size by multiplying the size parameter 'a' with a multiplicative factor 'f'. The results are shown in figure (5).

We investigated the deuteron size effect for the cases; f = 0.1, 1, 10 and 100 respectively which are shown in the above figure. From this investigation, it is found that the smaller the deuteron size (larger 'a'), the larger the differential cross-section.

Figure 6. Invariant mass spectrum with final $\Sigma \pi$ charge states. . Red color dotted line represents the \overline{K} N threshold

E 31 experimental data compare with our results and Chiral unity model results

Figure 7. E 31 experimental data compare with our results. . Red color dotted line represents the \overline{K} N threshold

Conclusion

We have analyzed the missing mass and the invariant-mass spectrum of D (K⁻, n) Λ (1405) reaction at the incident momentum of K⁻1.0GeV/c. The calculated results of invariant mass spectrum of $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$ are in good agreement with the values obtained from a very preliminary experimental data of D(K⁻, n)($\Sigma\pi$)⁽⁰⁾ charge states. Moreover, the calculated results are also consistent with the updated PDG (2016) value

Acknowledgements

I would like to specially thank to my supervisor, Dr Khin Swe Myint, Emeritus Professor, Rector (Rt.d), University of Mandalay, for her invaluable advices and enthusiastic guidance throughout this work.

I do thank Dr Lei Lei Win, Professor and Head of Physics Department, University of Mandalay, for her encouragement and permission.

I also thank my co-supervisor, Dr Thida Wint, Lecturer, Physics Department, University of Mandalay, for her discussions and collaborations.

References

- 1. B. Riley, I-T. Wang, J. G. Fetkovich and J. M. McKenzie, (1975), Phys. Rev. D 11 3065.
- 2. H. Feshbach, Ann. Phys. (1958) 5 357; (1962) 19 287.
- H. Noumi *et al.*, Spectroscopic study of hyperon resonances below K N threshold via the (K⁻, n) reaction on deuteron (J-PARC E31), http://j-parc. jp/researcher/ Hadron/ en/pac 1207/pdf/E31 1202-9.pdf.
- 4. J. Esmaili, Y. Akaishi and T. Yamazaki, (2010), Phys. Lett. B 686 23.
- 5. J. Esmaili, Y. Akaishi and T. Yamazaki, (2011), Phys. Rev. C 83 055207.
- Maryam Hassanvand, Yoshinori Akaishi, Toshimitsu Yamazaki, (3 Oct 2015), arXiv; 1510.00870v1 [hep-ph].
- 7. R. H. Dalitz and A. Deloff, (1991), J. Phys. G: Nucl. Part. Phys. 17 289.
- 8. R. J. Hemingway, (1985), Nucl. Phys. B 253 742.
- 9. T. Hyodo and A. Weise, (2008), Phys. Rev. C 77 035204.
- 10. Y. Akaishi, K. S. Myint and T. Yamazaki, (2008), Proc. Jpn. Acad. B 84 264.
- 12. Particle Data Group K. A. Olive et al., (2016), Chin. Phys. C 40 100001.