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Abstract 

The interesting features of numerical hydrodynamics for spherically 

symmetric spacetimes has been presented in the context of general 

relativity. Some distinct results are visualized and physical interpretations 

have been given. 
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Introduction 

The description of important areas of modern astronomy, such as high-

energy astrophysics or gravitational wave astronomy requires general 

relativity. Einstein’s   theory of gravitation plays a major role in astrophysical 

scenarios involving compact objects such as neutron stars and black holes. 

High-energy radiation is often emitted in regions of strong gravitational fields 

near such compact objects. The production of relativistic radio jets in active 

galactic nuclei, explained by either hydrodynamic or electromagnetic 

mechanisms, involves rotating supermassive black holes. The discovery kHz 

quasi-periodic oscillations in low-mass X-ray binaries extended the frequency 

range over which these oscillations occur into timescales associated with the 

relativistic, innermost regions of accretion disks. A relativistic description is 

also necessary in scenarios involving explosive collapse of very massive stars 

to black hole, or during the last phases of the coalescence and merge of 

neutron star binaries and neutron-star-black-hole binaries. These catastrophic 

events are believed to occur at the central engine of the most highly energetic 

events in nature, gamma-ray bursts (GRBs). Astronomers have long been 

scrutinizing these systems using the complete frequency range of the 

electromagnetic spectrum. Nowadays, they are the main targets of ground-

based laser interferometers of gravitational radiation. The direct detection of 

these elusive ripples in the curvature of space time, and the wealth of new 

information that could be extracted from them, is one of the driving 

motivations of present-day research in relativistic astrophysics. 
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An accurate description of relativistic flows with strong shocks is 

nowadays demanded for the study of a large number of important problems in 

physics and astrophysics. Ultra relativistic flows are found not only in 

extragalactic jets (Begelman, Blandford, & Rees 1984; see also Marti et al. 

1997 for an up-to-date bibliography) but also in high-energy heavy-ion 

collisions (Clare & Strottman 1986). General relativistic effects caused by the 

presence of strong gravitational fields appear connected to extremely fast 

flows in different astrophysical scenarios, e.g., accreting compact objects, 

stellar collapse, and coalescing compact binaries (Shapiro & Teukolsky 1983; 

Thorne 1987; Bonazzola & Marck 1994). In recent years, much effort has 

been addressed to developing accurate numerical algorithms able to solve the 

equations of general relativistic hydrodynamics in the extreme conditions 

described above. The main conclusion that has emerged is that modern 

algorithms exploiting the hyperbolic (and conservative) character of the 

system of equations are by far more accurate at describing relativistic flows 

than traditional finite-difference upwind techniques with artificial viscosity 

(introduced by Wilson 1972,1979). Wilsons work marked further 

developments for the integration of the relativistic hydrodynamics system of 

equations(Piran 1983; Stark & Piran 1987; Nakamura et al. 1980; Nakamura 

1981; Nakamura & Sato 1982; Centrella & Wilson 1984;Hawley, Smarr, & 

Wilson 1984a, 1984b; Evans 1986). However, the procedure seems to break 

down for relativistic flows with high Lorentz factors, for which large 

numerical inaccuracies and instabilities are obtained (Norman & Winkler 

1986). Totake advantage of the conservation properties of the system, modern 

algorithms are written in conservation form, in the sense that the variation of 

the mean values of the conserved quantities within the numerical cells is 

given, in the absence of sources, by the fluxes across the cell boundaries. 

Furthermore, the hyperbolic character of the system of equations allows one to 

obtain these fluxes from solutions of discontinuous initial problems (i.e., 

Riemann problems) between neighboring numerical cells. In this way, 

physical discontinuities appearing in the flow are treated consistently (the 

shock-capturing property). 

The use of Riemann solutions in numerical codes comes from the idea 

of Godunov (1959), who first introduced them in classical fluid dynamics, but 

it was not until the late seventies when, thanks to the development of new 
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cell-reconstruction procedures (van Leer 1979; Colella & Woodward 1984a, 

1984b; Marquina 1994), high-resolution shock-capturing (HRSC)techniques 

were recognized as the most effective way to describe complex flows 

accurately. Since then, efficient Riemann solvers based on exact or 

approximate solutions of the initial-value problem have been developed. A 

general approach, followed here, is to obtain the fluxes from the solution of a 

linearized form of the original system of equations (the local characteristic 

approach). This solution can be obtained exactly by writing the system in 

terms of the so-called characteristic variables. In terms of these variables, 

which are obtained by projection of the original variables onto the right 

eigenvectors of the Jacobian matrices, the system decouples into a set of 

scalar advection equations, the eigenvalues of the Jacobian matrices being the 

advection velocities (characteristic speeds). Intrinsic to this approach is the 

spectral decomposition of the Jacobian matrices of the partial derivative 

system of equations.  

Equations of General Relativistic Hydrodynamics as a System of 

Conservation Laws 

The equations that describe the evolution of a relativistic fluid are 

local conservation laws: the local conservation of baryon number, 

   0 .  J   

and the local conservation of energy-momentum, 

               0 .  T       

where  .  stands for the covariant divergence. If {∂t , ∂i}define the coordinate 

basis of 4-vectors that are tangents to the corresponding coordinate curves, 

then the vector J-the current of rest mass - and the bilinear form T - the 

energy-momentum tensor have the components 

    pguhuJuJ         ,   

  being the rest-mass density, p the pressure, and h the specific enthalpy, 

defined by  



p

h 1 where is the specific internal energy. Here u is the 
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4-velocity of the fluid, and g defines the metric of the spacetime Min which 

the fluid evolves.  

Throughout this paper, Greek (Latin) indices run from 0 to3 (1 to 3)- 

or, alternatively, they stand for the general coordinates   zyxzyxt ,,,,, -and 

geometrized units are used(c=G=1). An equation of state p=p (ρ,ε), as usual, 

closes the system. 

 A very important quantity derived from the equation of state is the 

local sound velocity, cs: 

                                                  


 









2

2 p
hcs , 

with   = 
  

  
  and    

  

  
  . Let   be a general spacetime, described by the 

four-dimensional metric tensor g .  

 

 

Figure 1: The variation of the local sound velocity cs with  ρ and ε 
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Figure 2:  The variation of the local sound velocity cs with  ρ and ε 
 

According to the {3+1} formalism the metric is split into the 

objects        ,    (shift), and     , keepingthe line element in the form 

  
ji

ji

i

i

i

i dxdxdtdxdtds   

222 2)(   

If n is a unit timelike vector field normal to the spacelike hyper surfaces 
t  

(t=const), then, by definition of α and βi
, 

  i

i

t n  
 

with 0 . in  for all i.  

Observers    at rest in the slice
t , i.e., those having n as 4-velocity measure 

the following velocity of the fluid: 

  
,

 . 

 . 
 i

nu

u
i




  

where the contravariant components 
j

i i   γ j  are 

  






i

t

i
i

u

u
  
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and the denominator. In equation is the Lorentz factor tunuW   .  which 

satisfies -1/22)-(1 W with . γ j 

ji

i   

Let us define a basis adapted to the observer    

  }, ,{ i)(  ne 
 

and the following five 4-vectors      

  }, ),. ,({ )()( JeTD A   A=0,…,4. 

Hence the above system of equations (1) and (2) can be written 

  
)()(   . AA sD   

The five quantities 
)( As  on the right-hand side of sources are equation the 

 eTs A 
)(  

  ,      },0 ,{ )(

)(

)()()( 









e

e
eeTs v

v

A 






 

where the quantities 

v are the Christoffel symbols and 

.),(, )(0)0( kjkkvkv gee     

Taking into account those quantities that are directly measured by   i.e., the 

rest-mass density (D), the momentum density in the j -direction )( jS , and the 

total energy density )(E , we can display them in terms of the primitive 

variables 

   
T

 , i ) , (  w  

by the following relations : 

, W    .  nJD ,     ) ,( j

2

)(  WhenTS jj  . p -    ) ,( 2WhnnTE   

Putting together all the above relations, the fundamental system to be 

considered for numerical applications is 
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where the quantities )(wF are 
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and the corresponding sources )(ws are 
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 being DE  ; that is, the total energy density minus the rest-mass 

density, gg  det  is such that 

  , det         ,    jig    

and “det” stands for the determinant of the corresponding matrix. The 

quantities
F  have been expressed in terms of the physical quantities 

measured by    which are the conserved variables. It is worthwhile, for 

numerical purposes, to point out, that the sources do not contain any 

differential operator acting on the components of w , which is a fundamental 

condition for preserving, numerically, the hyperbolic character of the system. 

 

Concluding remarks 

It has been presented that the most fundamental elements of the 

mathematical structure of multidimensional general relativistic 

hydrodynamics as a hyperbolic system of conservation laws. The analysis 

acquires an outstanding relevance in the context of numerical relativistic 

astrophysics. This study has been carried out in terms of the {3+1} formalism, 

which is well suited for the solution of the Einstein field equations. The 



242               J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.2B 

spectral decomposition of the Jacobian matrices of the system, necessary to 

build up a Riemann solver and for taking advantage of the local characteristic 

approach, have been explicitly derived. 
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