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Abstract 

Nuclear structure calculations of 12C has been performed by assuming the 12C as a two-body 
system which is composed of a neutron and a core nucleus 11C. The interaction between the 
neutron and core nucleus is derived by folding the nucleon-nucleon potential of a Gaussian form 
with the density distribution of the core nucleus. It is found that the neutron separation energy is in 
good agreement with the experimental value. 
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Introduction 

One of most fundamental aspects in nuclear physics is to get knowledge about nucleon-
nucleon interactions. Sources which provide information about nucleon-nucleon interactions are 
scattering data and nuclear binding energies (Willians W.S.C.). In this work, we have determined 
the last neutron separation energy of 12C by assuming that a nucleon moves in a nuclear potential 
which is an average effect of the other nucleons. 

Since every nucleon is in bound state, the potential is expected to be a potential well. 
Each nucleon moves in an orbit which is the orbit of a single particle in that potential well. The 
mean free path of an energetic nucleon moving in nuclear matter is about 2 fm. 

The Pauli principle strongly suppressed collisions between nucleons and that provides 
nearly undisturbed orbits for the nucleons in a nuclear matter. In nuclei the mean field is 
exclusively produced by the nucleon nucleon interaction. All microscopic models of the nucleus 
are based on some models of the basic interaction between two nucleons. Firstly, we construct a 
potential well by using a phenomenological nucleon-nucleon interaction. 

 

Nucleon-Nucleon Interaction 

The starting point to study nuclear many-body theory is two-body nucleon-nucleon 

interactions in the nuclear system. We assume that they give rise to an average single- particle 
potential. The interaction between two nucleons, nucleon 1 and nucleon 2 is expressed by  

   21021NN rrfVrrV   (1) 

Where, 0V  = central depth of the potential 

1r  = radial distance of nucleon 1 from the center of mass   

2r = radial distance of nucleon 2 from the center of mass and     

f describes the shape of the potential.              

Let            r = 21 rr   
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   rfVrV 0NN   

The function “f” is assumed to be smooth and has short range. In this calculation, we take 
“f” to be a Gaussian form,  
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where, β = range parameter of the interaction. 

Then, the equation becomes,  
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According to the nuclear matter calculation (Ring P. and Shuck P.(1980),), V0 is obtained 
to be 50 MeV while β varies from 1 fm to 2 fm.We will find out the value of β which reproduces 

the experimental binding energy of C12  and then, the potential between a nucleon and the core 

nucleus C11  will be derived. 

  

 1r - 2r  

                nucleon 2 2r  1r  nucleon 1 

   

 

Figure 1.1  Nucleon-Nucleon Interaction 

Potential Well of C12 Nucleus 

We will derive the nucleon-nucleus potential by folding the nucleon-nucleon interaction 
with the density distribution of the core nucleus.The average interaction experienced by the 
nucleon 1 due to the other nucleon is 
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In general,   rderV)r(V 3
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where,  r  = nucleon density distribution. 
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 We will use nucleon density distribution of the nucleus  r in harmonic oscillator model 

( Jager C.W.,  Vires H. & Vires C.(1974)). In the harmonic oscillator model, the density 
distribution  r  that depends on the radial distance is  
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(4) 

where, 0 = normalization constant 

   α = 1.067 fm 

   a = 1.687 fm. 

 r is normalized as    zrdr 3  where z is the charge number. 
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Then, we get the normalization constant 0 , 
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By substituting the values of the parameter α and a, we obtain  0  = 0.086. Finally, we obtain 

nucleon density distribution of the nucleus as follow:  
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By substituting the above  r  into equation (1), we obtain 
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(5) 

 

Mathematical Formulation 

   Schrödinger equation for two-body bound system is  

 
   ruEru)r(V

r

)1(

2dr

d

2 2

2

2

22























   (6) 

 

To solve the above equation, we expand the wave function u(r) with Gaussian basis.  

The Gaussian form for wave function is 
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wherecj’s are expansion coefficients, bj’s are range parameters and Nb is number of basis all of 
which are to be adjusted in the calculations. bj’s are chosen to be geometric progression as 
follow, 
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The Schrödinger equation for radial part becomes, 
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Multiplying both sides of the equation by 

2

b
r

1 jer












 from the left and integration through the 

equation;  

 
 







































 drerc)r(V
r

)1(

2dr

d

2
er

j

2

b

r

1
j2

2

2

22
2

bi

r
1 j 

 

 










2

bi

r
1 erE  drerc

j

2

b

r

1
j

j














 
(9) 

 































































 drer
r

1
er

2
drer

dr

d

2
erc

2

b

r

1
2

2

bi

r
1

2

2

b

r

1
2

22
2

bi

r
1

j
j

jj  

 

 
  dreercEdrerrVer

j

2

b
r2

bi

r
)1(2

j

2

b
r

1

2

bi

r
1 jj  











































   (10)
 

In this equation, 
ijT , 

ijN , and 
ijF  are the kinetic energy, centrifugal potential energy and 

potential energy matrix elements which are described by as follow: 
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In our calculation we use the folding potential between neutron and core nucleus 11C. Thus the 
potential energy matrix element with Gaussian basis wave function becomes as follow: 

  drer)r(VerV

2

b

r

1
NucleusNucleon

2

b

r

1
ij

jj



























   

The potential energy matrix element  
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The Hamiltonian is expressed by summing of kinetic energy term, centrifugal term and potential 
term as follows:
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By writing equation (15) in terms of matrix form as follows: 

      cNEcH   (18) 

The above equation (16) is solved iteratively by giving an estimate E0 value and initial set 

of .s'c )1(
i  Therefore, the eigen value equation is obtained.  
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where n+1 is the number of iteration. Then we get the neutron separation energy of 12C. 

 

Result and Discussion 

We have formulated the kinetic energy matrix elements, the centrifugal potential matrix 
elements and the potential matrix elements with Gaussian basis. Then, we solved the two-body 
Schrodinger equation. The parameters b1, bN and Nb are adjusted to get the convergent result. We 
found that the optimum value of the input parameters are b1= 0.1, bN = 20.0, Nb= 40. Then we got 
the neutron separation energy of 12C.  

We have calculated the neutron separation energy of 12C by varying the value of β 
parameter starting from 1.0 fm and increasing it by 0.1 fm. At β = 1.2 fm, the neutron separation 
energy is -12.04 MeV and at β = 1.3 fm, it is -18.91 MeV. Therefore we found that the 
experimental neutron separation energy which is -18.72 MeV (Audi G. and Wapstra 
A.H.,(1993)) should exist between the β value of 1.2 fm and 1.3 fm. The neutron separation 
energy at various values of β are shown in table (1). 

Table 1  The list of neutron separation energy at various β values 

β interaction range 
parameter   (fm) 

Neutron separation 
energy (MeV) 

1.0 -3.19 
1.1 -6.84 
1.2 -12.04 
1.3 -18.91 
1.25 -15.26 
1.26 -15.96 
1.27 -16.66 
1.28 -17.39 
1.29 -18.15 
1.291 -18.22 
1.292 -18.29 
1.293 -18.38 
1.294 -18.45 
1.295 -18.53 
1.296 -18.61 
1.297 -18.68 
1.298 -18.76 
1.299 -18.84 
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At β = 1.29 fm the neutron separation energy is -18.15 MeV which is close to the 
experimental value. So, the value of β is increased by 0.001 fm between 1.291 fm and 1.299 fm. 
We found that at β = 1.298 fm, our theoretical neutron separation energy -18.76 MeV is in good 
agreement with the experimental value (Audi G. and Wapstra A.H.,(1993)).    

 

Conclusion 

We have calculated the neutron separation energy of 12C nucleus by solving the two-body 
Schrodinger equation with Gaussian basis wave function. In our calculation nucleons are 
assumed to be moving freely in a nuclear potential well. We derived the nucleon-nucleus 
potential by folding the one range Gaussian nucleon-nucleon interaction with the nucleon density 
distribution of the 12C nucleus. Then we obtained the neutron separation energy of the last 
neutron to be -18.76 MeV at V0 = 50 MeV and β = 1.298 fm in our calculation. We can 
reproduce the correct neutron separation energy of 12C which is in good agreement with the 
experimental value -18.72 MeV (Audi G. and Wapstra A.H.,(1993)). 
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