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Abstract 

In this research,  and 
-
 single particle energy states are compared to study the role of and  

hyperons in nuclear medium. Energy states are calculated by solving one body Schrödinger 

equation with Woods-Saxon central potential including central part and spin-orbit coupling. 

Coulomb potential is taken into account for the calculation of 
-
 particle energy states. Wave 

function expanded into Gaussian basis is used in our calculation. Root-mean-square distance for 

various orbital angular momentum states are also calculated. The characteristic of  and 
-
 single 

particle energy states in light and heavy nuclei are discussed. 

Keywords:   single particle energy states,  single particle energy states, Woods-Saxon 

potential, Coulomb potential 

Introduction 

For the study of nuclear physics, the baryon-baryon interaction is fundamental and 

important. To complete the knowledge of baryon-baryon interaction, it is essential to understand 

Nucleon (N)-Nucleon (N) interaction, Hyperon (Y)-Nucleon (N) interaction, Y-Y interaction 

which can be obtained from normal nuclei, strangeness -1 (S = -1) hypernucei and strangeness -2 

(S = -2) hypernuclei respectively. N-N interaction has been continuously studied for more than 

60 years. Regarding the Y-N interaction and Y-Y interaction, where Y is a Σ or Λ hyperon, its 

research is steadily progressing. For strangeness S = -1) system, about 40 -hypernuclei and one 

-hypernucleus were found experimentally [Bando H, Motoba T and Zofka J, 1990]. Hyperons 

do not suffer from Pauli blocking by the other nucleons, it can penetrate into the nuclear interior 

and form deeply bound hypernuclear states. However, it is predicted that the average  potential 

in nuclear matter must be shallow due to the  strong conversion channel. There are many 

open questions about  - hypernuclei such as production reaction, widths and related Coulomb 

field assistance, quasi-free spectrum competition and decay channels. It is difficult to get the 

information about the -hypernuclear states from experimental data with low statics. Due to lack 

of the information on a phenomenological side, the theoretical calculation plays an important role 

in understanding the behavior of a -hyperon in nuclei. 

In this research, single particle energy states of -hyperon and 
-
-hyperon in light 

hypernuclei O16
  and C16


and heavy hypernuclei Pb208


 and Hg208


 are investigated to study the 

role of  and  hyperons in nuclear medium. In this calculation, we considered that a  or 
- 
-

hyperon moves freely in an average potential well generated by the other nucleons. Energy states 

are calculated by solving one body Schrödinger equation with Woods-Saxon central potential 

including spin-orbit coupling. Coulomb potential is taken into account for the calculation of         


-
 particle states to investigate the Coulomb effect in 

-
-hypernuclei. Gaussian basis wave is used 

as a trial wave function in our calculation. Root-mean-square (RMS) distance for various orbital 

angular momentum states are also calculated. and
-
 single particle energy states in light and 
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heavy nuclei are calculated and discussed about the characteristic of those two hyperons in 

different nuclear medium. 
 

Solving the Schrödinger Equation with the Gaussian Basis Wave Function 

Single particle energy levels of a hyperon in a potential well are numerically determined 

by solving the Schrödinger radial equation using the power inverse iteration method. 

The Schrödinger Radial Equation (SRE) is 
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where u(r) = r     is the reduced radial wave function. 
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wherebj’s are the range parameter and are chosen to be geometric progression as follows. 

...
b

b

b

b

b

b

3

4

2

3

1

2  = constant, bi+1 = 

1N/1

1

N

b

b










bi and N is the number of coefficients and, cj’s are 

expansion coefficients. 

The Schrödinger equation is written as follow. 

   (H0 + V) u = E u 

where,  E = energy eigen value, u = eigen vector, H0 = kinetic energy operator and V = potential 

energy operator. 

The Schrödinger equation for radial part is, 
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Multiplying both sides of the equation by 
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We can define the above equation as 
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where ijT  is kinetic energy matrix element, ijN  is norm matrix element and ijV  is the 

centrifugal potential energy matrix element. ijH is Hamiltonian matrix element. The

ijijij VandT,N  are analytically solved by using standard integral form as follows. 
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The kinetic energy matrix element, drer
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The centrifugal potential energy matrix element,
 

drer
r

1
erV

2

j

2

i
b

r

1

2

b

r

1

ij






























 
 






  

  
 

The potential energy matrix element, drerVerV
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where   ijijijij VVTH   .
     

The Schrödinger equation in matrix form can be written as follows. 
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Equation (7) can be expanded as 
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In order to determine the energy eigen value E, we solved the following set of linear equations 

iteratively.
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Average Potential Well of a -Hypernucleus 

 The interaction between lambda and the other nucleons in the core nucleus is derived 

using phenomenological Woods-Saxon potential which is based upon the sum of a spin-

independent central potential and spin-orbit potential. In our calculation, we considered that a      

-particle moves freely in an average potential well generated by the other nucleons of the core 

nucleus. The total nuclear interaction between lambda and core nucleus is  

 V(r) =V l (r) +V w-s(r) + V l-s(r)     (9) 

where, Vl(r)   = centrifugal potential =  
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m =the mass of lambda and l  =orbital angular momentum quantum number. 

V l-s (r) = Woods-Saxon spin-orbit potential = 
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V so = the strength of Woods-Saxon spin-orbit coupling potential term  

cm π

 =Compton wavelength of the pion  

 V w-s(r) = Woods-Saxon central potential = -V0 (r)  

V0    = the strength of the Woods-Saxon potential  
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(r) =the nuclear density = 
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In above equation, r =the radial distance from the center, 
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a =the diffuseness parameter. 

The total interaction between lambda and core nucleus becomes
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Using above potentials as in 10(a) and (b), -single particle energy states in O16


 and

Pb208


are calculated for different ljstates. 

Average Potential Well of a 
-
-Hypernucleus 

In contrast to -hypernuclei where the narrow peak in experimental excitation spectra 

indicate correctness of the notion of a single particle, such a property for the -hyperon is not so 

well established. The observation of the ground state of as light species as  - hyperhelium He4
Σ  

was announced at the 1988 Padova Conference [Hayano R S et al., 1988]. The (K
- 
stopped, 

-
) 

reaction produced ground state at as much as 3.2  0.3 MeV binding with a width of 4.6         

0.5 MeV [Harada T and Akaishi Y, 1990][Bressani T et al., 1989]. Such a -hypernucleus state 

was derived also theoretically with full use of the repulsive core and strong isospin-spin 

dependence of the -N interaction. In the reference [Hayano R S et al., 1988], the authors 

claimed that the width may reach as much as a few tens of MeV in nuclear matter due to  

strong conversion channel and the average -nucleus potential must be shallow (well depth of    

10 Vre 25 MeV). The spin-orbit splitting seems to be comparable (or larger) than that for a 

nucleon. For a long time, the strength of the  spin-orbit potential (Vso) was intensively discussed 

[Dover C B, 1986]. It was usually believed that its amount may distinguish between quark-gluon 

and meson-excange pictures of baryon-nucleon interactions. In a simple additive quark model 

[Pirner H J, 1979] [Pirner H J and Povh B, 1982] a large  spin-orbit potential was predicted: 

3

1
:

3

4
:0:1::: 

sososo
N

so VVVV ,  

Where as OBE models[Bando H, 1981] predict much smaller values ( 
soso

N
soso VVVV ~,3/~ ). 

The experiments [Bertiniet al., 1985][Yamazaki T et al., 1986] in the mid-eighties supported the 
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idea of large  spin-orbit strength and thus the quark model. Large  spin-orbit strength [Dover  

C B, 1986] would contradict both quark and OBE models. New data are needed to settle this 

problem. 

In this research,  spin-orbit strength (Vso) is used as 18 MeV according to the reference 

[Wünsch R and Zofka J, 1988]. Attractive Coulomb interaction is also taken into account for the 

interaction between 
- 
and core nucleus. The total interaction between 

- 
and core nucleus is 

V(r) = Vl(r) +Vw-s (r) + Vls(r) + Vc(r) 

Vc is the Coulomb potential of a homogeneously charged sphere with the radius Rc. The 

value Rc = 1.25 (A-1) 
1/3

fm, is used in this calculation. 

The total interaction between 
- 

and the other nucleons in core nucleus for j = l+1/2 and for            

j = l-1/2 are as in following equations 11(a) and (b). 
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Due to  strong conversion channel, the complex potential is used in which real part of 

potential gives the bonding energy and imaginary part gives the level width of 
-
 single particle 

states in -hypernuclei. The parameters which are used in this calculation are summarized in 

table (1). 

Table 1 The potential and range parameters used in our calculation [Bando H et al., 1990] 

Types of Parameter hypernuclei 
-
hypernuclei 

strength of Woods-Saxon  

central potential 

-30 MeV (-10 - i3) MeV 

Diffuseness parameter (a) 0.6 fm 0.6 fm 

Radius of single nucleon (r0) 1.1 fm 1.1 fm 

Strength of spin-orbit potential  -4 MeV -18 MeV 

 

Results and Discussions 

In order to know the attractive Coulomb interaction effect in 
-
-hypernuclei, the energy 

eigen values of 
-
hypernuclei are calculated within the frame work of Woods-Saxon central 

potential with and without Coulomb interaction. The results are compared in figure (1). 
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To investigate the role of  and  hyperons in hypernuclei, single particle states and root 

mean square distance of light hypernuclei O16


and C16


and heavy hypernuclei Pb208


and 

Hg208


are calculated and the results are compared in table (2) to (5). Energy states are also 

displayed in figure (2) and (3). 

Table 2  and  single particle states of light hypernuclei O16


and C16


for different lj states 

Single-

particle 

States 

O16


 C16


 

Single 

particle 

states 

O16


 C16


 

Single 

particle 

energy 

(MeV) 

 

 

Single 

particle 

energy 

(MeV) 

(without 

Coulomb 

Potential) 

Single 

particle 

energy 

(MeV) 

(with 

Coulomb 

Potential) 

Single 

particle 

energy 

(MeV) 

 

 

Single 

particle 

energy 

(MeV) 

(without 

Coulomb 

potential) 

Single 

particle 

energy 

(MeV) 

(with 

Coulomb 

potential) 

1s -13.04 -1.07-1.27 -4.79-1.60 1s1/2 -13.04 -1.07-1.27 -4.79-1.60 

1p -2.34 - -0.21-0.24 
1p3/2 -2.76 - -2.01-0.89 

1p1/2 -1.54 - - 

 

Table 3 Root-mean-square distance of light hypernuclei O16


and C16


 for different ljstates 

Single-

particle 

States 

RMS 

distance 

(fm) 

RMS 

distance 

(fm) 

(without 

Coulomb 

potential) 

RMS 

distance 

(fm) 

(with 

Coulomb 

potential) 

Single-

particle 

States 

RMS 

distance 

(fm) 

RMS 

distance 

(fm) 

(without 

Coulomb 

potential) 

RMS 

distance 

(fm) 

(with 

Coulomb 

potential) 

1s 2.19 3.87 3.03 1s1/2 2.19 3.87 3.03 

1p 3.34 - 8.34 
1p3/2 3.28 - 4.27 

1p1/2 3.48 - - 
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Table 4  and  single particle states of heavyhypernuclei Pb208


and Hg208


 for different 

ljstates 

Single-

particle 

States 

Pb208


 Hg208


 

Single 

particle 

states 

Pb208


 Hg208


 

Single 

particle 

energy 

(MeV) 

 

 

Single 

particle 

energy 

(MeV) 

(without 

Coulomb 

Potential) 

Single 

particle 

energy 

(MeV) 

(with 

Coulomb 

Potential) 

Single 

particle 

energy 

(MeV) 

 

 

Single 

particle 

energy 

(MeV) 

(without 

Coulomb 

potential) 

Single 

particle 

energy 

(MeV) 

(with 

Coulomb 

potential) 

1s -25.86 -6.99-2.76 
-30.99-

2.92 
1s1/2 -25.86 

-6.99-

2.76 
-30.99-2.92 

1p -21.85 -4.16-2.48 
-26.69-

2.80 

1p3/2 -21.91 
-5.03-

2.39 
-27.22-2.75 

1p1/2 -21.74 
-2.71-

2.64 
-25.82-2.86 

1d -17.07 -0.93-2.05 
-22.10-

2.60 

1d5/2 -17.24 
-3.26-

1.98 
-23.84-2.48 

1d3/2 -16.82 - -19.96-2.79 

2s -15.44 - 
-21.60-

2.48 
2s1/2 -15.44 - -21.60-2.48 

1f -11.64 
- 

 

-17.28-

2.33 

1f7/2 -11.98 - -20.78-2.16 

1f5/2 -11.22 - -13.54-2.57 

2p -9.34 
- 

 

-16.60-

2.09 

2p3/2 -9.48 - -17.59-2.09 

2p1/2 -9.18 - -14.62-2.12 

1g -5.69 
- 

 

-12.31-

1.98 

1g9/2 -6.25 - -17.75-1.89 

1g7/2 -5.07 - -6.58-2.11 

2d -3.16 
- 

 

-11.87-

1.62 

2d5/2 -3.63 - -13.60-1.78 

2d3/2 -3.04 - -9.15-1.33 

3s -2.77 - 
-11.86-

1.51 
3s1/2 -2.77 - -11.86-1.51 

1h -0.30 
- 

 
-7.38-1.53 

1h11/2 -0.21 - -14.52-1.66 

1h9/2 - - -1.04-0.71 

2f - 
- 

 
-7.59-1.20 

2f7/2 - - -9.50-1.51 

2f5/2  - -5.24-0.73 

2g - - -3.60-0.99 
   2g9/2 - - -5.50-1.22 

2g7/2 - - -1.85-0.76 

1i - - -2.64-1.06  - -  
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Table 5 Root-mean-square distance of heavy hypernuclei Pb208


and Hg208


for different lj 

states 

Single-

particle 

States 

Pb208


 Hg208


 

Single 

particle 

states 

Pb208


 Hg208


 

RMS 

distance 

(fm) 

RMS 

distance 

(fm) 

(without 

Coulomb 

potential) 

RMS 

distance 

(fm) 

(with 

Coulomb 

potential) 

RMS 

distance 

(fm) 

RMS 

distance 

(fm) 

(without 

Coulomb 

potential) 

RMS 

distance 

(fm) 

(with 

Coulomb 

potential) 

1s 3.59 4.15 3.37 1s1/2 3.59 4.15 3.37 

1p 4.25 5.05 4.21 
1p3/2 4.26 5.25 4.35 

1p1/2 4.23 4.66 3.97 

1d 4.73 5.99 4.86 
1d5/2 4.76 6.02 5.14 

1d3/2 4.70 - 4.48 

2s 4.39 - 4.76 2s1/2 4.39 - 4.76 

1f 5.13 
- 

 
5.44 

1f7/2 5.17 - 5.72 

1f5/2 5.10 - 4.98 

2p 4.88 
- 

 
5.47 

2p3/2 4.94 - 5.44 

2p1/2 4.93 - 5.47 

1g 5.50 
- 

 
6.02 

1g9/2 5.56 - 6.13 

1g7/2 5.45 - 5.87 

2d 5.45 
- 

 
6.31 

2d5/2 5.74 - 6.01 

2d3/2 5.78 - 6.86 

3s 6.13 - 6.45 3s1/2 6.13 - 6.45 

1h 48.53 
- 

 
6.67 

1h11/2 6.03 - 6.43 

1h9/2 49.50 - 8.23 

2f - 
- 

 
7.14 

2f7/2 - - 6.62 

2f5/2 - - 8.00 

2g - - 7.77 
2g9/2 - - 7.29 

2g7/2 - - 8.34 

1i - - 7.39  - - - 
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Figure 1 
-
 single particle states in C16


and Hg208


for different orbital angular momenta states 

with Coulomb and without Coulomb potential 

 

 

Figure 2  and
-
 single particle states in light hypernuclei O16


and C16


for differentljstates  
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Figure 3 and
-
 single particle states in heavy hypernuclei Pb208


and Hg208


for different lj 

states  

 The Coulomb interaction effect can be seen in figure (1). It is found that the energy states 

without Coulomb potentials are higher than that of with Coulomb potential in both light and 

heavy 
-
-hypernuclei. Therefore, it can be concluded that it is important to take into account the 

attractive Coulomb potential between 
-
and core nucleus for the calculation of single particle 

states in 
-
-hypernuclei. 

The energy eigen values and root-mean-square (RMS) distance of light hypernuclei O16


and C16


 are presented table (2) and (3). And,  and
-
single particle states of those two light 

hypernuclei are displayed in figure (2).According to the calculated results, it is observed that the 

lowest binding state of O16


is 1p1/2 state while 1p3/2 state is lowest binding state in C16


. 

Moreover, it is found that single particle states of O16


are lower than that of C16


although 
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Coulomb potential is included in the calculation of energy states of C16


hyper nuclei. 

Therefore, it can be concluded that binding energy of light -hypernucleus O16


is larger than that 

of light 
-
-hypernucleus C16


. 

Another observation is that the higher the single particle states, the larger the RMS 

distance with the increase in orbital angular momentum number in those two light hypernuclei. 

The energy eigen values and RMS distance of heavy hypernuclei Pb208


and Hg208


 are 

presented in table (4) and (5). and
-
 single particle states in those two heavy hypernuclei for 

different ljstates are displayed in figure (3). According to the calculated results, it is found that 

the lowest binding state of Pb208


is 1h11/2 state while 1h9/2 state is lowest binding state in Hg208


when the Coulomb potential is included in the calculation of energy levels of Hg208


hypernucleus. In the heavy hepernuclei, binding energies of Hg208


is larger than that of Pb208


in different orbital angular momentum states.  

It is found that RMS distance for  hyperon in Hg208


 gradually increased with the 

decreasingof energy eigen values within the frame work of the Woods-Saxon central potential 

including with and without Coulomb potential. 

It is also observed that energy splitting of Hg208


is larger than that of Pb208


with the 

increase in orbital angular momentum number. It is due to the larger spin-orbit potential strength 

of -hypernuclei than that of -hypernuclei. 

The interesting result what we found in our calculation is that the RMS distance for                 

-hyperon in Hg208


 gradually increased with the increasing of energy eigen values when the 

spin-orbit interaction is switched on.  

In order to understand this strange behaviorclearly, the potential and the corresponding 

wave function have been plotted for various lj states of Hg208


which are displayed in figure 4 (a) 

to (d). It is found that the attractive interaction strength of total spinj = l + s state is stronger than 

that of j = l – s state. The stronger interaction strength gives the greater binding energy.  

Moreover, the spin-orbit attractive potential works near the nuclear surface.  Furthermore, the 

single-nucleon wave functions forj = l + s are more shifted to the outer region than that having 

spin state j = l - s and that is why the root-mean-square distance of nuclei for each spin state is 

larger although the binding energy is large.  These effects could explain why both the rms value 

and binding energy are large.   
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Figure 4  single-particle wave functions and potentials in Hg208


 for                                     

(a) 1p state and (b) 1d state(c) 1f state (d) 1g state 
 

Conclusion 

We have investigated the characteristic of  and  hyperons in light hypernuclei O16


and

C16


and heavy hypernuclei Pb208


and Hg208


. Single particle energy states and RMS distance 

of  and  hyperons are calculated by solving one body Schrödinger radial equation using power 

inverse iteration method numerically. For -hypernuclei, Coulomb interaction is included beside 

Woods-Saxon central potential and Woods-Saxon spin-orbit potential in the calculation of energy 

eigen values to investigate the effect of Coulomb interaction. It is found that Coulomb interaction 

is important to take into account in the calculation of energy eigen values for  hypernuclei. And, 
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it is observed that the binding energy of light hypernucleus O16


is larger than that of C16


. But, 

binding energy of heavy hypernucleus Pb208


is smaller than that of Hg208


due to the Coulomb 

attractive interaction in heavy hypernucleus Hg208


. Therefore, it can be concluded that the                

-single particle states are coulomb assistant nuclear states. It isfound that the energy splitting of 

 hypernuclei is larger than that of  hypernuclei due to the large spin-orbit strength of                         

 hypernuclei. 

And, it is also find out the interesting observation that the root-mean-square distance of 

nuclei for each spin state of heavy 
-
-hypernucleus is larger although the binding energy is 

large.Because, the spin-orbit attractive potential works near the nuclear surface and the single-

hyperon wave functions for j = l + s are more shifted to the outer region than that having spin 

statej = l - s . 
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