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Abstract 

Simple astrophysical simulations for stellar systems which are assumed to 

be collision less have been studied using N-body simulation techniques. 

Physical entities such as potential-density pair profiles for the dark halo and 

stellar bulge have been simulated and some interesting remarks are given. 

Keywords: collision less stellar systems, N-body simulation, stellar disk, 

dark halo, stellar budge 

Introduction 

The underlying dynamics relevant in the astrophysical context for a 

system of N particles interacting gravitationally is typically Newton’s law 

plus, in case, an external potential field (see however below for a discussion 

of N-body simulations in general relativity). The force Fi acting on particle i of 

mass mi is: 
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is the gravitational constant, and ext is the 

external potential. The problem is thus a set of non-linear second order 

ordinary differential equations relating the acceleration 
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position of all the particles in the system. Once a set of initial condition is 

specified (for example the initial positions ri and velocities 
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particles) it exists a unique solution, analytical only for up to two bodies, 

while larger N require numerical integration (e.g. see Press et al. 2007). 

However special care must be employed to ensure both accuracy and 

efficiency. In fact, the gravitational force (eq.1) presents a singularity when 
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the distance of two particles approaches 0, which can lead to arbitrarily large 

relative velocities. In depend on the specific choice of initial conditions. In 

contrast, all singularities in linear ordinary differential equations are 

independent of initial conditions and thus easier to treat. Therefore constant 

time step methods are unable to guarantee a given accuracy in the case of 

gravitational dynamics and lead to unphysical accelerations during close 

encounters, which in turn may create unbound stars.  

A shared adaptive time step scheme can correctly follow a close 

encounter, but the price is paid in terms of efficiency as all the other particles 

of the system are evolved on the timescale of the encounter, which may be 

several orders of magnitude smaller than the global timescale, resulting 

essentially in a freezing of the system. The singularity may be avoided by 

introducing a smoothing length in Eq. 1 (e.g. see Aarseth 1963), that is by 

modifying the gravitational interaction at small scales. For example: 
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where >0 is the softening, or smoothing length, that is a typical distance 

below which the gravitational interaction is suppressed. To minimize the force 

errors and the global impact of the softening for distances larger than, finite 

size kernels that ensure continuous derivatives of the force may be employed 

(e.g., see Dehnen 2001). This strategy effectively suppresses binary formation 

and strong gravitational interactions, but at the price of altering the dynamics 

of the system. 

 
Figure 1: The 3D Plot of Gravitational Force against distance 
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Figure 2: Snapshot - profiles of the evolution of for Gravitational force F  

Timescales, Equilibrium and Collisionality 

A system of N particles interacting gravitationally with total mass M 

and a reference dimension R (for example the radius containing half of the 

total mass) reaches a dynamic equilibrium state on a timescale comparable to 

a few times the typical time (Tcr) needed for a particle to cross the system 

(       √    
 ). This is the response time needed to settle down to virial 

equilibrium, that is 2K/|W|=1, where K is the kinetic energy of the system
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(assuming no external field). If the system is 

initially out of equilibrium, this is reached through mixing in phase space due 

to fluctuations of the gravitational potential, a process called violent 

relaxation. 

Once the system is in dynamic equilibrium a long term evolution is 

possible, driven by two-body relaxation. Energy is slowly exchanged between 

particles and the system tends to evolve toward thermodynamic equilibrium 

and energy equipartition. The timescale (Trel) for this process depends on the 

number of particles and on the geometry of the system: Trel∝N/log(0.11N)Tcr. 

N-body systems such as galaxies and dark matter halos have a relaxation time 

much longer than the life of the Universe and are thus considered collision 

less systems. Smaller systems, such as globular and open clusters, are instead 

collisional, as the relaxation time is shorter than their age. Two body 

relaxation is also suppressed when one particle in the system dominates the 

gravitational potential, such as in the case of solar system dynamics, where 
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planets are essentially quasi-test particles. Close encounters between three or 

more particles not only contribute to energy exchange, but can also lead to the 

formation of bound subsystems (mainly binaries). The formation and 

evolution of a binary population is best followed through direct, unsoftened, 

N-body techniques. A self-gravitating N-body system made of single particles 

has a negative specific heat, that is it increases its kinetic energy as a result of 

energy losses. This is a consequence of the virial theorem and qualitatively it 

is analogous to the acceleration of a Earth artificial satellite in presence of 

atmospheric drag. A negative specific heat system is thermodynamically 

unstable and over the two body relaxation timescale it evolves toward a 

gravothermal collapse, creating a core-halo structure, where the core 

progressively increases its concentration, fueling an overall halo expansion. 

The collapse is eventually halted once three body interactions lead to the 

formation of binaries. The so called core collapsed globular clusters” are 

considered to be formed as a result of this mechanism. 

Methods for cosmological N-body simulations 

Cosmological N-body simulations play an important role in modern 

cosmology by providing vital information regarding the evolution of the dark 

matter: its clustering and motion, about properties of dark matter halos. The 

simulations are instrumental for the transition of the theoretical cosmology 

from an inspiring but speculative part of astronomy to the modern precision 

cosmology. In spite of more than 50 years of development, N-body methods 

are still a thriving field with invention of more powerful methods providing 

more accurate theoretical predictions. 

Dark matter is important component of universe. All observational 

evidence indicates that it dominates dynamics of normal and dwarf galaxies 

clusters and groups of galaxies. At high red shifts it provided the force that 

drove the formation of first galaxies and quasars. The observed large filaments 

and giant voids all can be understood and explained if we combine the 

dynamics of dark matter with the predictions of the inflation model on the 

spectrum of primordial fluctuations. 

The dark matter is likely made of particles that other than the gravity 

force do mot couple with the other matter. There may be some channel of 
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interactions between dark matter particles resulting in annihilation and 

production of normal particles. However, even if present (no observational 

evidence so far), this channel is weak and the dark matter is (mostly) 

preserved over the evolution of the Universe. 

How this dark matter evolves and how it forms different structures and 

objects was an active field of research for a very long time. The first 

(Somewhat) realistic N-body simulation collapse of a cloud of 300 self-

interacting particles was done by P.J.E. Peebles Peebles (1970). Remember 

that at that time of the dawn of cosmology, there was no dark matter, the hot 

gas x-ray in clusters had not been yet discovered (it was discovered in 1971), 

there were no voids or superclusters. So the first N-body simulation had 

indicated that the force of gravity alone may be responsible for the formation 

of clusters of galaxies, which was a big step forward. It also discovered a 

problem the density profile in the model was not right: too steep. The Solution 

for this problem was continuous mass accretion on the forming cluster instead 

of a one-time event of collapse (Gunn & Gott 1972) 

From that moment the simulations took off. Larger and larger numbers 

of particles were used as new codes and new computers became available. For 

some time it looked almost like a sport: whose simulation has more “muscle”. 

The pace has slowed down in recent years mostly because it became more 

difficult to analyse the simulations and to make the results accessible to the 

larger community. Development of numerical methods was crucial for 

advances in N-body simulations. At the beginning direct summation technique 

was used to run the simulations (Peebles1970;White 1976; Aarseth et al. 

1979). At that time slower processors, no parallel computing it was difficult to 

make simulations with more than just a few thousand particles. 

The main motivation at that time was to develop new computational 

methods. The number of operations in the direct summation method scales as

2
N , where N is the number of particles. So, one quickly ran out of 

available cpu. However, now the situation is different: processors are much 

faster and the number of cores on a workstation can be significant. A 

simulation with N = 10
5− 10

6
 is relatively fast(from few hours to few days). 

Such simulations can be very useful for testing different ideas and for small 

runs. It is also very easy to modify the code because everything is very 



256               J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.2B 

transparent. For example, one can add external tidal force or modify the law 

of gravity. It is also a great tool for training students: a simple parallel pair-

wise summation code can be written in few hours. Particle-Mesh method a big 

step forward with cpu scaling 
2

N However, it requires a large 3D mesh for 

computation of the gravitational potential. The size of a cell in that mesh 

defines the force resolution, and, if one needs better resolution, the number of 

cells should be increased. As the result, one may run out of available 

computer memory. Still, the PM method is very fast and is easy to implement.  

Cosmological N-body problem: main equations 

In order to derive equations for the cosmological N-body problem, one 

can start with the equations of general relativity and derive equations of 

motion of self-gravitating nonrelativistic particles in the expanding Universe. 

For the case of nonrelativistic matter and the weak-field limit, we simply 

arrive at the Newtonian equations. There are some limitations with this 

approach: we cannot treat relativistic particles and we neglect time needed for 

gravitational perturbations to travel from one point to another effectively 

treating changes in the gravitational potential as instantaneous. However, 

these effects are not significant for most applications: velocities are typically 

well below relativistic and effects of the finite time of gravitational 

perturbations are small. We start with definitions, proper position r and 

comoving coordinates x are related: 

a(t)x(t)t)r(x,                                                          (3) 

where a(t) is the expansion factor. Differentiating eq.(3) overtime, we get 

velocities: 

pecvHrxaxart)v(x,           (4) 

Here xapecv      is the peculiar velocity and aaH    is the Hubble 

constant. It is also useful to introduce the specific momentum defined as 

pecavx2ap    

In cosmology we deal with a rather specific case of the N-body 

problem. Here discreteness of matter can be neglected. In general this is not 

r = ax+ax = Hr 
. . . 
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the case with the two-body effects gradually accumulating over time. Systems 

studied in cosmology such as the nonlinear evolution of dark matter clustering 

do not suffer from the two-body scattering and can be treated using the 

collision less Boltzmann equation paired with the Poisson equation for the 

gravitational potential. In the comoving coordinates the Boltzmann equation 

describing the evolution of the distribution function f (x, p, t) can be written 

as: 
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where peculiar gravitational potential )(x  is related with the normal 

gravitational potential  as   3
2

r
b

Gρ2Φ where the first term is the 

potential of the background (constant over space) density field bρ and the 

second term is the deviation from the background. Changing coordinates from 

proper r to comoving x we can write the Poisson equation as: 

t)(x,δ
a

ρΩ
πG4)ρ(x)(πGa4 dm

0cr0
b

22      (6) 

Here dmdmdmdm ρ)ρt)(x,(ρδ  is the dark matter density contrast. 

Factors 0Ω and cr,0ρ are the average matter(dark matter plus baryons) density 

in the units of the critical density and the critical density all taken at the 

present moment a = 1.Note that the right hand side of eq.(6) may have a 

positive or negative sign. This is unusual considering that in a normal Poisson 

equation the density is always positive. The negative sign of the density term 

in eq.(6) happens in locations where the density is below the average density 

of the Universe. While there are no real negative densities in the Poisson 

equation, the regions with the negative r.h.s. of eq.(6) in comoving 

coordinates act as if there are. For example, in these regions the peculiar 

gravitational acceleration points away from the centre of an under dense 

region resulting in matter being pushed away from the centre. This explains 

why over time voids (large under dense regions) observed in the large-scale 

distribution of the dark matter become bigger and more spherical. 
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Figure 3: Snapshot -profiles of the evolution of  for Gravitational Potential  

The collision less Boltzmann equation eq.(5) is a linear first order 

partial differential equation in the 7-dimensionalspace (x,p, t). It has a formal 

solution in the form of characteristics: a set of curves that cover the whole 

space. The characteristics do not intersect and do not touch each other. Along 

each characteristic the value of the distribution function is preserved. In other 

words, if at some initial moment ti we have coordinate xi, momentum pi, and 

phase-space density fi, then at any later moment t along the characteristic we 

have f(x, p, t) = fi(xi, pi, ti). Equations of the characteristics, the Piosson 

equation, and the Friedmann equation can be written as follows: 
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Here we specifically assumed a flat cosmological model with the 

cosmological constant characterized by the density parameter, Λ0Ω at red shift 

z = 0. 
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There are numerical factors in eqs.(7–8) that obscure the fact that the 

equations of characteristics are nothing but the equations of motion of 

particles under the force of gravity. These equations are almost the equations 

of the N-body problem in the comoving coordinates. However, there are 

differences. Characteristics cover the whole phase-space which we cannot do 

in simulations that use a finite number of particles. Instead, we approximate 

the phase-space by placing particles at some positions and giving them initial 

momenta. How exactly we place the particles depends on the problem to be 

solved. For example, if a large simulation volume is expected to be resolved 

everywhere with the same accuracy, then particles should be nearly 

homogeneously distributed initially and have the same mass. If instead a small 

region should be resolved with a higher resolution than its environment, than 

we place lots of small particles in the region and cover the rest of the volume 

with few large particles. Because we intend to produce an approximate 

solution for the continuous distribution of matter in space as described by the 

Boltzmann-Poisson equations, we may not even think that we solve the        

N-body problem an ensemble of point masses moving under the force of 

gravity. For example, at the initial moment the volume of a simulation may be 

covered by many small non-overlapping cubes (not points).Then each cube is 

treated as a massive particle with some size, mass, and momentum. So, 

instead of N point masses we have N small cubes. This is definitely a better 

approximation for the reality. Indeed, these types of approximations are used 

in many simulations. For example, in Particle-Mesh(PM) simulations dark 

matter particles are small cubes with constant density and size. In Adaptive 

Mesh Refinement (AMR) codes particles are also cubes with the size of the 

cube decreasing in regions with better force resolution. The last clarification is 

related to the baryons. In order to treat the baryons properly, we need to 

include equations of hydrodynamics and add gas density to the Poisson 

equation. We clearly do not do it in N-body simulations. Still, we cannot 

ignore baryons. They constitute a significant fraction of mass in the Universe. 

If we neglect baryons, there will be numerous defects. For example, they 

growth rate of fluctuations even on large scales will be wrong and virial 

masses will not be correct. In cosmological N-body simulations we assume 

that all the mass-dark matter and baryons is in particles and each particle 
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represents both dark matter and baryons with the ratio of the two being equal 

to the cosmological average ratio. 
 

Simple N-body problem: pair-wise summation 

We start discussion of numerical techniques with a very simple case: 

forces are estimated by summing up all contributions from all particles and 

with every particle moving with the same time-step. The computational cost is 

dominated by the force calculations that scale as 2N , where Nis the number of 

particles in the simulation. Because of the steep scaling, the computational 

cost of a simulation starts to be prohibitively too large for 610N  However, 

simulations with a few hundred thousand particles are fast, and there are 

numerous interesting cases that can be addressed with 610 N  particles. 

Examples include major-mergers of dark matter halos, collisions of two 

elliptical galaxies, and tidal stripping and destruction of a dwarf spheroidal 

satellite galaxy moving in the potential of the Milky Way galaxy. In these 

cases it is convenient to use proper, not commoving coordinates. 

The problem that we try to solve numerically is the following. For 

given coordinates rinit and velocities vinit of N massive particles at moment         

t = tinit find their velocitiesv and coordinates r at the next moment t = tnext 

assuming that the particles interact only through the Newtonian force of 

gravity. If ri and mi are the coordinates and masses of the particles, then the 

equations of motion are: 
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Where G is the gravitational constant. Two steps should betaken before we 

start solving equations (8) numerically First, we introduce force softening: we 

make the force weaker (“softer”) at small distances to avoid very large 

accelerations, when two particles collide or come very close to each other. 

This makes numerical integration schemes stable. Another reason for 

softening the force at small distances is that in cosmological environments, 

when one deals with galaxies, clusters of galaxies, or the large-scale structure, 
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effects of close collisions between individual particles are very small and can 

be neglected. In other words, the force acting on a particle is dominated by the 

cumulative contribution of all particles, not by a few close individual 

companions. There are different ways of introducing the force softening. For 

mesh-based codes, the softening is defined by the size of cell elements. For 

TREE codes the softening is introduced by assuming a particular kernel, and it 

is different for different implementations. The simplest and often used method 

is called the Plummer softening. It replaces the distance between particles 

jiij rrΔr  in eq.(10)with the expression 2
1

2

ij )r (  , where is the 

softening parameter. 

 

Figure 4: The            Plot of Acceleration against distance 

Second, we need to introduce new variables to avoid dealing with too 

large or too small physical units of a real problem. This can be done in a 

number of ways. For mesh-based codes, the size of the largest resolution 

element and the Hubble velocity across the element give scales of distance 

and velocity. Here we use more traditional scaling. Suppose M and R are 

scales of mass and distances. These can be defined by a particular physical 

problem. For example, for simulations of an isolated galaxy M and R canbe 

the total mass and the initial radius. It really does not matter what M and R 

are. The scale of time t0 is chosen 2
1

3

0 )(GM/Rt


 . Using M, R, and t0 we 

can change the physical variables ri, vi, mi into dimensionless variables using 

the following relations 
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We now change the variables in eq. (10 ) and use the Plummer softening 
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Where, ig~ is the dimensionless gravitational acceleration. Note that these 

equations look exactly as eq (10), if we formally set G=1 and 0 . 

The simplest, but not the best, method to derive the Green functions is 

to consider  i,j,k and ρ i,j,k as amplitudes of the Fourier components of the 

gravitational potential in the computational volume and then to differentiate 

the Fourier harmonics analytically. This gives 
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where (kx, ky, kz) = (2π /L)(i, j, k) are components of the wave-vector in 

physical units. A better way of solving the Poisson equation is to start with the 

finite-difference approximation of the Laplacian∇ 2
. Here we use a the second 

order Taylor expansion for the spacial derivatives: 
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This approximation leads to a large system of linear algebraic equations:           

A = 4πGρ, where ρ is the vector on the right hand side,  is the solution, and 

A is the matrix of coefficients. The solution of this matrix equation can be 

found by applying the Fourier Transformation. This provides another 

approximation for the Green functions: 
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For small (i, j, k) eq.(14) gives the same results as  = 4πGρ . However, at (i, 

j, k) close to Ngrid the finite-difference scheme G1 provides less suppression 
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for high-frequency harmonics and thus gives a stronger and more accurate 

force at distances close to the grid spacing ∆x. The computer memory puts 

constraints on the PM method because the method requires a large                     

3-dimensionalmesh of size N
3

grid while the force resolution increases only as 

the first power of Ngrid : ∆x = L/Ngrid, where L is length of the computational 

box. As we start to increase the resolution, we quickly run of the computer 

memory. 

 

Figure 5: Snapshot -profiles of the evolution of k and ∆ x for Green Functions 

Concluding Remarks 

An alternative approach to implement the numerical solution of the     

N-body problem is to make use of the simple codes of Mathematica or 

MaTLab. For direct simulations this approach can be very effective, thanks to 

the fact that the bottle neck of computation is just the evaluation of the 

gravitational force, which has a very simple expression. The special purpose 

hardware can then be interfaced with a general purpose computer, which takes 

care of all the other numerical operations required to solve the equations of 

motions. It can be seen, from the snapshot-profiles, the virulent notice of 

gravitational field, gravitational acceleration etc,…In this paper, it has been 

attempted to carry out simple N-body simulation using simple Mathematica 

built in codes such as List Plot, List Animate, Bessel J and other simple 

coding commands. 

 

 



264               J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.2B 

Acknowledgements 

I am highly grateful to Professor Dr Khin Khin Win, Head of Department of Physics, 

University of Yangon, for her kind permission to do and her encouragement to carry out this 

paper.  

I would like to thank Professor Dr Aye Aye Thant, Department of Physics, University of 

Yangon, for her valuable guidance, kind encouragement, valuable help, and support in this 

paper. 

 Special thanks are due to Professor, Dr Thant Zin Naing, Retired Pro-Rector 

(Admin), International Theravāda Buddhist Missionary University, for his valuable guidance 

and helpful advice to carry out this work. 

References 

Aarseth S. J., Turner E. L., Gott III J. R., (1979), ApJ, 228,664 

Appel A. W., (1985), SIAM Journal on Scientific and Statistical Computing, vol. 6, no.1, 

January 1985, p. 85-103.,6, 85 

Bagla J. S., (2002), Journal of Astrophysics and Astronomy,23, 185 

Peebles P. J. E., (1970), AJ, 75, 13 

Planck Collaboration et al., (2013), ArXiv e-prints 

 

 


