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Abstract 

Attempts are made to give an alternative description of self-similar 

spacetimes which is proving to be very substantial and useful in 

astrophysics and general relativity. The metric for collapsing dust cloud is 

utilized in this formalism. The nature of gravitational collapse in self-

similar spacetimes has been studied in detail and relevant physical 

interpretations of the results obtained  are given. Some interesting results of 

the calculation have been visualized. 
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Introduction 

Gravitational collapse is an important issue in general relativity and it 

is widely believed that it may be responsible for high energy objects in our 

universe. Energy theorems in relativity have shown that under reasonable 

energy conditions a matter cloud with sufficient mass would undergo a 

gravitational collapse. General relativistic field equations involve a system of 

highly nonlinear partial differential equations and hence analyzing a 

gravitational collapse scenario in general even in spherically symmetric 

spacetime is virtually impossible. Self-similar spacetimes have therefore been 

given considerable attention in recent applications. Due to the symmetry 

property of self-similarity equations in self-similar spacetime become an 

ordinary differential equation and therefore the study of a phenomena 

becomes much easier to analyze. In this study we therefore use self-similar 

spherically symmetric spacetimes to examine the gravitational collapse and its 

features. In astrophysics and cosmology the self-similar models are of great 

interest to the relativists and cosmologist alike. It is worthy to start with the 

very definition of self-similar spacetimes. A self-similar spacetimes is 

characterized by the existence of a homothetic killing vector field (Joshi, 

1993). 
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Self-Similar Spacetimes and Path of Photon 

A spherical symmetric spacetimes is self-similar if it admits a radial 

area coordinate r and an orthogonal time coordinate t such that for the metric 

components    and   we have 

                          

                          

for all k >0. Thus, along the integral curves of the killing vector field all 

points are similar. 

A spherical symmetric spacetimes (SSS) in co-moving coordinates is 

given by general form 

ds
2
 = -A(t, r)dt

2
 + B(t,  r)dr

2
 + r

2
C(t,  r)dΩ2 

where dΩ2
 = dθ2

 + sin
2θd2

. If SSS is self-similar, self-similarity condition 

must hold, it must have a homothetic killing vectors, which means t kt,r kr 

and the metric becomes, 

ds
2
 = -A(kt,kr)dt

2
 + B(kt,kr)dr

2
 + r

2
C(kt,kr)dΩ2

 

and parameters A,B,C are such that 

A(t,  r) = A(kt,kr) 

B(t,  r) = B(kt, kr) 

C(t,  r) = C(kt, kr) 

The collapsing dust cloud is described by the self-similar metric, 

 

ds
2
 = -dT

2
 + R

'2
dr

2
 + R

2
(dθ2

 + sin
2θd2

)   (1) 

where 
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To check the metric, one can proceed as follows: 

A(t, r) = -1 

A(kt, kr) = -1 

A(t, r) = A(kt, kr) 
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The above shows that the given metric is self-similar. The radial null 

geodesicsin this metric is defined by ds
2
 = 0 and kθ= k


= 0(Tolman, 1934). 

The geodesic equations for k
T 

and k
r 
from Lagrangian equation are   
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Similarly 
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 Let k
a 

be tangent to radial null geodesics (i.e, k
a
ka= 0 =  k

a
;b k

b
) for the 

metric in equation(1) and gab k
a 

k
b 

=  0,  for null condition. We have for radial 

null geodesics from equations (3) and (4),   
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Where   is affine parameter. The Kretschmann scalar of the metric is 

obtained as 

      
                       

                     
 

If  we assume that r = r and t = ar, we get 
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Which gives us, K =  

Therefore, the points of unboundedness i.e., K = occur at (ar, r). Self-

similarly implies that all variables of physical interest may be expressed in 

terms of the similarity parameter   
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The above is the possible path of photon in gravitationally collapsing objects. 

 

 

 

 

 

 

 

 
Figure: The profile of the path 

of photon in gravitationally 

collapsing objects 

Figure: The profile of the Kretschmann 

scalar of the metric  with an orthogonal 

time coordinate t and a radial area 

coordinate r 
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Gravitational Collapse in Self-Similar Spacetimes 

We would like to examine the determination of curvature strength of 

the naked singularity in order to decide on its seriousness and physical 

relevance and the mathematical calculations of Christoffel Symbols, Riemann 

Tensors, Ricci Tensors and Kretschmann Scalar of the metric. 

The collapsing dust cloud is described by the self-similar metric, 

  ds
2
 = -dT

2
 + R

'2
dr

2
 + R

2
(dθ2

 + sin
2θd2

)    (5) 

where     
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Figure: The profile of the 

homothetic coordinate R(t, r) in self-

similar  spacetimes. 

Figure: The profile of the homothetic 

coordinate R'(t, r) in self-similar  

spacetimes. 
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Here, b is constant and after differentiation we get 

    
          

  (   
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 (6) 

From metric,                 
   

      
        

       

To find some calculations, we have to use the following equations, 

Christoffel Symbol are denoted by,     
   

 

 
   (                   ) 

Riemann Tensor                 
  

 

Kritchmann Scalar                  

Ricci Tensor             
        

      
    

      
    

  

 

Gravitatinal collapse of Bose-Einstein condensate dark matter halos 

As a first step in the study of the time dynamics of the gravitationally 

bounded Bose-Einstein condensates, we have to chose a variational tril wave 

function. Instead of fixing it in an arbitrary way ( by assuming, for example, 

that the initial density profile of the condensate has a Gaussian form ), we 

require that | |  satisfies the continuity equation 

  

  
      ⃗⃗          (7) 

For  the density of the Bose-Einstein condensate we assume a general form 

         
 
     

 
    

 
                                   (8) 

where  
 
     

 
    and  

 
    are arbitrary functions of  t and r to be 

determine.From a physical point of view, the trail density profile  (t) is the 

sum of two terms, the first representing a "cosmological" type homogeneous 

term  hom ( t ), while the second term  inhom ( t, r)represent the effect of the 

time-independent inhomogeneities in the dark matter halo. The 

inhomogeneous term is assumed to be separable in the variables t and r, so 

that  inhmo( t, r) =  1( t ) 2( r ). 
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Substitution in equations  ⃗⃗         and          
 
     

 
    

 
     into 

the continuity equation  Eq.(7) gives 
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We determine the function  
 
    by imposing the condition r '2 (r)/ 2               

( r ) = constant = α  > 0, which leads first to 

 
 
       

   (10) 

where C1 is an arbitrary constant of integration. Next we require that the term 

in the square bracket of Eq.(9) vanishes. Therefore, Eq.(9) gives the following 

two independent differential equations for the determination of the functions 

 0(t) and  1(t), 
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And  
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respectively. Hence, the general solution of  Eq.(9) can be obtain as 

        
 

     
*      

  

     
+  (13) 

where a0 and b0 are arbitrary constants of integration. Since at the vacuum 

boundary of the condensate, where r = R(t), the density must satisfy the 

condition   [R(t), t] = 0, At  0, we obtain for the two integration constants 

the condition a0 + b0 = 0. 

Concluding Remarks 

 In this thesis some fundamental notions and basics of self-similar 

spacetime are given and attempts are made to derive the path of photon using 

simple tractable methods. The Kretschmann scalar is also calculated for 

spherical symmetric spacetimes metric. Self-similar solutions are derived and 

visualizations of some results are done with the help of mathematica. 

Autonomous phase plane, self-similar and scaling exact solutions with scalar 

field are given and some animation plots are visualized using mathematica. 
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Appendix 

It is necessary to compute the Christoffel symbols for equation (1), 

from which we can get the curvature tensor. If we use labels (1,2,3,4) for (T, r, 

 , ) in the usual way, non zero Christoffel symbols are given by using 

Tensorpak. m package, 
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From these we get the following nonvanishing components of the 

Riemanntensor 
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We get non-zero values of Ricci Tensor 
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Scalar Curvature is,     
 

                
    

 

and Krichman Scalar is,   
                      

                  
    


