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Abstract 

The purpose of this research is to investigate the structure of ppK system by using pΛ* model, 

where *Λ  is a resonance state of pK  system. To determine the binding energy of this system, 

Schrödinger equation is solved in two body system, which consists of 
*Λ  and proton. In our 

calculation, the Gaussian basis wave function is used to solve the Schrödinger equation. 

Phenomenologically constructed potential of pΛ*

 
interaction is used in this calculation. The 

experimental value for the binding energy of *Λ  is 27 MeV. By using theYamazaki and Akaishi 

phenomenological potential, the calculated result of the binding energy of ppK

 
system from the

pΛ *

 
threshold is 21.17 MeV and level width is 61 MeV. The binding energy of ppK system from 

 ppK   threshold is   MeV. 48.17E21.17 *
Λ

 By using the DISTO experimental data, the 

calculated binding energy for ppK  system from p* threshold is 78.0457 MeV and level width is 

118.4 MeV. The binding energy of ppK  system from  p  pK   threshold is

  MeV.  105.04E78.04 *Λ


 
Thus, the calculated results for binding energy of ppK  system are 

in good agreement with the calculated result of YA and experimental result of DISTO. 

Keywords Power inverse iteration method, Two body system, Three body system. 

  

 Introduction 

 A “K
-
pp”-like structure has observed in the d (π

+
, K

+
) reaction at 1.69 GeV/c. In this 

reaction (1405) hyperon resonance is expected to be produced as a doorway to form the ppK    

through the ppKpΛ*  process. 

Since this is a three-body system, several groups calculated the binding energy and width 

of K
-
pp by applying various few-body calculation techniques such as variational and Feddeev 

type calculations. The obtained binding energies are scattered in a broad range: 10-20 MeV for 

shallow potential cases and 50-100 MeV for deep cases. The width would be as wide as 70 MeV 

because of the strong ΣπNK  coupling. In addition there could be non-mesonic absorption 

contributions of )N.(ΛNNK   

The first experimental evidence of the K
-
pp bound state was reported by the FINUDA 

collaboration in the stopped K
-
 absorption reactions on 

6
Li, 

7
Li and 

12
C targets. They observed a 

lot of Λp pairs emitted in back-to-back, and found the invariant mass of the pair significantly 

lower than K
-
pp mass threshold. 

The binding energy of MeV(syst.)(stat.)115 3

4

6

5







 and the decay width of 

MeV(syst.)(stat.)67Γ 2

3

14

11







 were obtained. However, there was a theoretical criticism to 

interpret the observed structure as the K
-
pp bound state. Experimental evidence was reported by 

                                                      
1
 Dr, Lecturer, Department of Physics, Taungoo University. 

2  
Dr, Emeritus Professor, Department of Physics, University of Mandalay 



208               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2C 

the DISTO collaboration. They measured the missing-mass and invariant mass spectra in an 

exclusive reaction of ΛpKpp   at 2.85 GeV. The binding energy of 103 ± 3 (stat.) ± 5(syst.) 

MeV and the width of 118 ± 8 (stat.) ± 10 (syst.) MeV were obtained. However, they did not 

observe the signal at 2.50 GeV, may be due to the less production cross section of Λ (1405) at 

this energy. 

The (1405) is conventionally assumed to be a well-established resonance and to 

represent the I = 0, strangeness = –1, 




2

1
J p

state within the L = 1 supermultiplet of the three-

quark system. Lying roughly 30 MeV below the NK  threshold, the resonance can only be 

observed directly in the (∑π )
0
 system of final states of production experiments. It was first 

reported by Alston et al. in the reaction 3πpK   at 1.15 GeV/c and subsequently “seen” in 

several other experiments. However these observations suffered from 

a. low statistics, 

b. difficulties with the reconstruction of final states involving ∑ decays, and 

c. the uncertainly in the removal of backgrounds, particularly that from 

Σ(1385)→∑π whose rate was badly know. 

In fact, none of the experiments during the period 1962-1972 were able to demonstrate a 

convincing signal, to measure the precise mass and width, or to determine the quantum numbers. 

The only experiment which has reported a respectable signal for  (1405) is that of Thomas et al. 

in the reaction πKpπ  at 1.69 GeV/c. Subsequently, Chao et al. demonstrated the 

importance of such data in constraining the multichannel analyses. Very recently, Dalitzetal have 

restated the debate on the nature of the Λ (1405) resonance and asked for more precise data on 

the production line-shape of the   π1405  Λ  . Currently, it is not known whether the 

interpretation of the  (1405) as a three-quark state is or is not consistent with its appearance as 

an unstable NK  bound state.  

 

Two- Body Calculations 

In order to calculate the structure of two-body quantum system we solved Schrödinger 

equation. 

HU = EU          

(H0 +V) U =EU         

Where, 

H= Hamiltonian operator 

E= Energy eigen value 

U = Eigen vector 

H0 = Kinetic energy operator 

V = Potential energy operator 
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Since, the interaction between Λ
*
 and proton is central force, so we choose the spherical 

coordinate for the wave function 

       φΦθΘrRrΨ


         

where,  

 rR


is a radial part and    φΦθΘ  is an angular part . 

 φ,θYm

l
   φΦθΘ  is spherical harmonic which are well known. 

We have to solve only the radial part  rR  with the local potential type. 

 

 
      )1(











 rUErUrV
r

1

2μdr

d

2μ 2

2

2

22 
  

Where,     rRrrU   

The reduced mass,   
pΛ

pΛ

MM

MM
μ

*

*




 

*Λ
M =mass of Λ

* 

pM =mass of proton 

 

Gaussian Basic Treatment 

To solve the above equation, we will use the Gaussian Basis wave function. 

  )2(















 

2

jb

r

j

j

1
ecrrU

    

Where, s'c j
are expansion coefficients and s'b j

are range parameters which are adjusted in the 

calculations with 

j1j
bcb 


 

1

1N

N bcb 
 

1N

1

1

N

b

b
c











           

The Schrödinger equation becomes 

 
 

2

j

2

j b

r

1

j

j

b

r

1

j

j2

2

2

22

ercEercrV
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1

2μdr

d

2μ


































 











 
  

j

j

ij

j
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ijijijij VATH  
  

ijH is the Hamiltonian matrix element  

       cNEcH           

Where, [H] and [N] are square matrices.  [c] is column matrix.  Nij, Tij and 

ijA are analytically 

solved by using standard integral form. 
 

Calculation of Eigen Value 

In the previous section, the Schrödinger equation can be written as the following matrix 

equation. 

       cNEcH           

       cEcHN
1


          

     cEcA 
        

Which is an eigen value equation with 

 

       N,HNA
1


 
is called the norm matrix and [H] is the Hamiltonian matrix. We are going 

to use the power inverse iteration method to calculate eigen values E with corresponding eigen 

vectors c. 
 

Calculation of the Physical Quantities 

We normalized wave function as  1druu*
     


















j

b

r

1

j

2

jercAu 

     

Where, A is the normalization constant.
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



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




2
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r

1

i

*

i

* ercA  1drercA
j

b

r

1

j

2

j 
















 

 
i

ijj
j

*

i

2
1NccA  




i

ijj

j

*

i Ncc

1
A  
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With this normalized wave function, we have calculated the physical quantities which are 

average kinetic energy T̂  , average centrifugal potential energy 


ij
A  and average potential 

energy V̂ . To find the average kinetic energy, we have the relation such that 

)4(ˆˆ  uTuT
  
 

       druT̂u*
 

 





































 drercA

dr

d

2μ
ercAT̂

2

j

2

i
b

r

j

1

j2

22
b

r

1

i

*

i

*  
 

    
i

ij

j

j

*

i

2
TccA

     

Where, drer
dr

d
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2μ
T

2
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2
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The average centrifugal potential energy, the relation can be expressed as 
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The average potential energy numerically, the relation can be expressed as
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The relation of the root mean square radius, 
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Interactions
 

 The elementary NK and NN interactions deduced semiempirically to obtain not only the 

binding energy and width but also the spatial and momentum distribution of the individual 

particles. Three-body calculations by showing that the NK complex potential, which is 

transformed from coupled-channels interactions, has very little energy dependence. Furthermore 

the result remains unchanged, even when the NK and NN interactions to vary in a wide range, as 

long as they reproduce the energy and width of (1405). The predicted K
-
pp is a compact 

nuclear system with a binding energy around 50MeV and a root-mean-square (rms) p-p distance 

of 1.9 fm. The K
-
p pair (quasi- 

*
) behaves like an atomic unit in a “molecule” of K

-
pp, 

similarly to the mechanism of the Heitler-London scheme. Namely, a super strong nuclear force 

is caused by a migrating real K meson.  

 The Λ (1405) resonance state the I = 0 is bound state of NK . Through the main part of is 

article the “classical” experimental values for the binding energy and width, 

MeV 27EB 0I

NKk  
, Γ = 40 MeV 

The 
*
 data combined with the kaonic hydrogen shift (yielding pK-a ) and Martin’s NK

scattering length (a
I=0

 and a
I=1

), 

   fm0.280.49i0.150.78a
pK

  

   fm0.040.68i0.071.70a 0I 
 

    fm0.070.60i0.090.37a 1I 
 

Where used in a coupled-channels calculation to deduce the NK interactions of the following 

forms 


















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
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D
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b

r
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

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
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1
, 
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




















2

C

I

πΛN,K
b
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expvv

2
, Where b = 0.66 fm and 

MeV643v 0I

D


, MeV412v 0I

C1


, nonev 0I

C2


, MeV62v 1I

D


, 

MeV285v 1I

C1


, MeV285v 1I

C2


.The two interactions,  rv I

π
 and  rv I

π
 are taken to be 

vanishing to simply reduce the number of parameters. This is justified because they are almost 

irrelevant in describing theΚ bound states.  

The above coupled-channels interactions were used to derive equivalent single-channel

NK potentials with imaginary parts in energy-independent forms, which is an appropriate way to 

obtain the decaying state of Kapur-Peierls as discussed below. The obtained complex potentials 

are 

    ,
0.66

r
expi83595rv

2

0I

NK

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
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
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
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
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


 

in units of MeV and fm. The same rage is assumed for I=0 and I=1. The interaction strength (V0) 

and the rage (b) can be determined simultaneously because B and pK
a  have different 

dependences on V0 and b. Semiempirical NK interaction is consistent with the theoretically 

derived ones from meson-exchange and from chiral dynamics. 

Nothing that the parameter b in the above Gaussian distribution is related to the rms distance R as

R816.0R
3

2
b  , the observed proton rms radius (Rp= 0.862 fm) to give a range parameter         

b = 0.70 fm, which is compatible with rage parameter (0.66 fm). The NK scattering amplitude by 

changing the range parameter b. The real and imaginary parts with b = 0.7 fm reproduce the 

chiral dynamics result very well, in spite of the strong claim by Oset and Toki that AY’s 

scattering amplitudes are too large compared with those obtained from the chiral unitary 

approach of Oset and Ramos. Thus, the interaction rage deduced and used in AY is fully 

justified.  
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Table 1  Calculated potential parameters (V0 and W0 in MeV), energies (
ppKE )and widths  

(
ppK  ) of  K

-
pp in MeV, and the I=0 scattering length in fm with varied K rage  

               (b in fm ), while reproducing Λ (1405). 

 

 

 

 

 

 

 

  

 

Results and Discussions 

The structure of K
-
pp nuclear cluster comprehensively by solving three-body system 

exactly in a variational method starting from the  (1405) resonance    is a K
-
p bound state. 

The prediction for the presence of K
-
pp as a compact bound system with M = 2322 MeV/c

2
,       

Bk = 48 MeV and Γ = 60 MeV remains unchanged by varying the NK and NN interactions 

widely as far as  (1405). The 
*
- p system exists a compact doorway state propagating to  

 fm 1.67R
pΛ


 ppK . 

The potential used in the calculation is      

















b

r
-exp

b

r
ωivrV

2

00

opt
 

In Y-A potential, the value of MeV 227.0v0   

                            MeV 106.0ω0   

                              b =0.30fm 

By using Y-A potential, the calculated value of binding energy and level width for Λ
* 

p 

system are represented in table (2).
 

In DISTO potential, the value of   MeV 400.0v0   

                               
162.0MeVω0   

                                   b = 0.3 fm 

By using DISTO ( Defense Industrial Security Education & Training Office) 

experimental data, the calculated value of binding energy and level width forΛ
* 

p system are 

represented in table (3). 

Then, average kinetic energy, average potential energy and root mean square radius 

values are calculated. 

b V0 W0 ppKE  
ppK  A

I=0
 (fm) 

1.0 -316.5 -62.0 -49.5 66.5 -1.95+i0.45 

0.9 -368.7 -67.0 -49.0 65.7 -1.89+i0.44 

0.8 -439.6 -73.0 -48.3 64.4 -1.82+i0.44 

0.7 -540.0 -81.0 -47.3 62.9 -1.75+i0.43 

0.6 -689.5 -91.0 -45.8 60.3 -1.69+i0.43 

0.5 -929.7 -105.0 -44.0 57.4 -1.62+i0.42 

0.4 -1358.0 -128.0 -42.1 54.9 -1.55+i0.42 

0.3 -2250.0 -162.0 -40.1 51.3 -1.48+i0.42 
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By using Y-A phenomenological potential and the DISTO experimental data, the 

calculated results of average kinetic energy, theaverage potential energy and the root mean 

square radius for Λ
*
 and p system are represented in table (4). 

In the three body K
-
pp system, Yamazaki-Akaishi calculated rms value between N and 

the NK is 1.67 fm. The calculated rms values are different because of using the different 

potential models. 
 

Table 2 The calculated results of binding energy and level width of Λ
*
p system for  

Yamazaki Akaishi potential. 

 

 

 

 

 

Table 3  The calculated results of binding energy and level width of Λ
*
p system for  DISTO 

experimental data. 

 

 

 

 
 

Table 4  Calculated results of kinetic energy, potential energy and root mean square radius  

For  Λ
*
p system. 

 Kinetic Energy 

(MeV) 

Potential Energy 

(MeV) 

RMS (fm) 

Y-A phenomenological 

Potential  [T.Yamazaki] 

43.90 -65.06 1.46 

DISTO Experimental Data 

[M. Maggiora et al] 

68.27 -146.32 1.11 

 

Conclusion 

Thus, the calculated results for binding energy of ppK  system are in good agreement 

with the calculated result of YA and experimental result of DISTO. The calculated rms values 

are different because of using the different potential models. The Λ (1405) plays an essential 

role in forming the K nuclear clusters (KNC). A new window to Nuclear Physics would be 

opened up through the investigation of KNC. 

 

 

Λ
*
p potential BE (MeV) Level Width (MeV) 

Y-A  phenomenological 

potential  [T.Yamazaki] 

-21.00 61.00 

Our Calculated Result -21.168 60.76 

 

Λ
*
p potential BE (MeV) Level Width (MeV) 

DISTO Experimental Data 

[M. Maggiora et al] 

-78.00 108.00 

Our Calculated Result -78.05 108.52 
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