
J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2C 

CALCULATION OF DEUTERON BINDING ENERGY WITH AND 
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Abstract 

In this paper, the binding energy of deuteron is calculated by using both with and without partial 

wave decomposition methods. Firstly, the time independent Schrödinger equation is transformed 

into Lippmann-Schwinger equation for two-body bound system. This equation is solved by using 

Gauss-Legendre integration method. In this calculation, Malfliet-Tjon III potential is used and 

derived the potential matrix element in momentum space. The binding energy of deuteron is 

calculated by using iterative method. From this research, it is found that our calculated deuteron 

binding energy by using with partial wave decomposition method is 2.2283 MeV and it is about     

4 keV greater than the experimental result. Our calculated deuteron binding energy by using 

without partial wave decomposition method is 2.2335 MeV and it is about 9 keV greater than the 

experimental result. The experimental deuteron binding energy is 2.2245 MeV.  

Keywords:   Gauss-Legendre integration method, iterative method, Malfliet-Tjon III potential 

 

Introduction 

In 1931, Brige and Menzel suggested the existence of the first isotope of hydrogen. After 

a few months later American scientist H.C. Urey and his co-worker investigated the distilled 

sample of natural hydrogen for the optical atomic spectrum of H1

1
 in a discharge tube. Isotopic 

separation to study the properties of deuterium quickly became an intense activity. The discovery 

of deuterium in 1932, coming before the discovery of neutron, was an experimental shock to 

theory. Deuteron, the simplest system of bound nucleon, the nucleus of deuterium atom contains 

one proton and one neutron. In 1932, it is discovered by Urey and his co-workers. The properties 

of deuteron in nuclear theory are as important as the hydrogen atom in atomic theory. It was 

shortly after the discovery of deuteron, Chadwick discovered neutron devoted in deuteron while 

he studied the deuterium. There is no man who immediately eliminates the confusion of proton 

and neutron. Because the previous model is persistent as a bound system of a proton and an 

electron. Based on this assumption, Heisenberg produced the first model of proton-neutron force. 

He assumed that the phenomenological potential could describe the proton-neutron force, and the 

neutron was a spin ½ particle like proton. The first idea about the nature of the nucleon-nucleon 

interaction came from Yukawa in 1935. He assumed that the strong interaction between two 

nucleons is carried by an interaction in quantum. 

 Deuterium is one of the only four stable nuclides with an odd number of protons and 

neutrons. Most odd-odd nuclei are unstable with respect to beta decay because the decay product 

are even-even, and are therefore more strongly bound, due to nuclear paring effects. Its benefits 

from having its proton and neutron coupled to a spin 1 state, which gives a stronger nuclear 

interaction. The corresponding spin 1 state does not exist in the two-nucleon or two-proton 

system due to Pauli’s exclusion principle which would require one or the other identical particle 
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with the same spin to have some other different quantum number, such as orbital angular 

momentum.  

The standard approach in conventional nuclear theory is to treat the two-nucleon 

interaction in a phenomenological manner, that is, assume it to be derivable from a potential, and 

then set up a reasonable form for it in agreement with general theoretical considerations and 

experimental data. Most experimental data providing direct information on the potential concern 

with the two-nucleon system: neutron-proton (n-p), proton-proton (p-p) and neutron-neutron          

(n-n). The n-p system produces a bound state, whereas no bound state exists in p-p and n-n 

systems. 
 

Calculations by Using Partial Wave Decomposition Method 

Lippmann-Schwinger Equation for the Two-Body Bound System 

The Lippmann-Schwinger equation is derived from the time independent Schrödinger 

equation.  The time independent Schrödinger equation has the following form.  

EΨΨĤ   (1) 

But, Ĥ  have kinetic energy 0Ĥ and potential energy V̂ operators.  So, Eq.(1) becomes 

ΨEΨ)V̂Ĥ( 0 
 

(2) 

The Eq. (2) can be written as follows. It is Lippmann-Schwinger equation in ket form.  

  

 Ψ
Ĥ-E

1
Ψ

0

  (3) 

By multiplying Eq. (3) with p m  from left and operating 
2p̂  on to gets                 
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(4)     

By inserting the completeness relation
'

2 ' '

m'

p ' dp ' p ' m' p ' m' 1  into Eq.(4),
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Since the local potential is consider, Eq. (5) becomes 
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(6) 

Since the potential is spherically symmetric, the index m can be dropped. It becomes 
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 (7) 

The integral term in Eq. (7) can be transform into discrete form as follows: 

  

(8) 

   

The calculation of potential matrix element is presented in next section. The FORTRAN 

90 code is written using Eq. (8) to find the deuteron binding energy.  Malfliet-Tjon potential is 

used in this calculation.  In writing numerical code, the potential is written as a function.  Then 

Gauss points, Gauss weights and momentum range are prepared to use Gauss-Legendre 

integration method. Iterative method is used to find the binding energy of deuteron.  

 Calculation of Potential Matrix Element 

Yukawa type Malfliet-Tjon potential has the following form 

                 
r

e
V

r

e
VV(r)

rμ

R

rμ

A

RA 

  

Where, VA, VR = depth parameter and µA, µR =   range parameter 

The potential matrix element is 

 mpVmp)p(p,V  
 (9)

 

When the normalized equation is used, it becomes 
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(10) 

By inserting the completeness relation into Eq. (10), 
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The Eq.(11) can be written as 
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 After solving Eq.(12), it becomes  
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The Malfliet-Tjon potential which is expressed in coordinate space is used in this calculation. So 

this potential can be transformed into momentum space by using the completeness relation            

1.rrrd 


 

 prrVrrprdrdpVp   


   (14)       

For the local potential, it can be written as 

 
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So, the potential matrix element is as follows: 
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For 0 , Eq. (16) becomes        
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Substituting Eq. (17) in Eq. (13) gets 
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For  = 0, P0 (x) = 1 and let cos = x. Eq. (18) becomes 
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A numerical code for the potential is written as a function using Eq.(19).  In writing numerical 

code, the values of potential depth parameters (VA and VR) and range parameters (μA and μR) are 

used.  
 

Calculations by Using Without Partial Wave Decomposition Method 

Lippmann-Schwinger Equation for the Two-Body Bound System 

Lippmann-Schwinger equation in ket form is 
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Multiplying Eq.(20 ) with p
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from left gets 
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After operating with 
2P̂ on to Ψ , Eq.(21) becomes
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The completeness relation is inserted in Eq.(22) as follows,

  

ΨppV̂ppd

2m

P
E

1
Ψp

2




 


  (23) 

In Eq.(23)     has magnitude p and direction x.    has magnitude     and direction     . Therefore      

it can be written as  
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(24) 

To find out the relations between xx,   and y  , the momentum     and      are considered in the 

Cartesian diagram. 

 

Figure 1  The momenta      and      in the Cartesian co-ordinate system 

From the figure  
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We take scalar product of      and     and then     

 ppθcos 
 φφcosθsinθsinθcosθcos   (27) 

p


p



p


p



p


p

 p x



222               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2C 

Let x,θcos  xθcos  , yθcos pp 
 

Eq.(27) can be written as 

  φφcosx1x1xxy 22
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The arbitrary azimuthal angle for momentum     is chosen to be zero.   
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Substituting Eq.(29) in Eq.(24) obtains 
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(30) 

The integral term in Eq. (30) can be transform into discrete form as follows: 

  (31) 

     

 

 

 The calculation of potential matrix element is presented in next section. We write a 

FORTRAN 90 code using Eq.(31) to find the deuteron binding energy. Malfliet-Tjon III potential 

is used in this calculation. In writing numerical code, the potential is written as a function.  

Calculation of Potential Matrix Element 

The potential matrix element can be written as 
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 The Malfliet-Tjon potential is expressed in coordinate space. So, it will be transformed 
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It can be written as 
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By using the delta function properties, Eq. (34) becomes 

 

     rVedφdθsinθdrr
8π

1
y,pp,V r.ppi

2π

0

π

00

2

3








 

(35)  

After inserting the Malfliet-Tjon potential in Eq.(35), it can be written in the form  
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By defining as 
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By substituting Eq.(36) in Eq.(37) 
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Solving Eq (38) obtains 
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(39)  

 The numerical code  is written as a function using Eq.(39). In writing numerical code, the 

potential parameters shown in Table 1 are used.  

 

Calculation of Eigen Value by Using Iterative Method 

Let iφ be the set of the possible state kets. 

 n321i φ.....φφφφ   (40) 

Ψ  is the total wave function of all state kets and which can be written as  
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It is assumed that, 
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If j becomes large, all terms in the bracket approach to zero expect the first term. So Eq.(45) 

becomes 
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By taking the ratio of Eq.(46) and (47), 
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In this way the largest eigenvalue  1λ  is obtained. In order to apply the iterative method for 

partial wave decomposition, the Eq.(7) is rewritten again and let Kernel be K(E). 
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Therefore, it can be written as 

 
  ΨEKΨ   (50) 

Arbitrary value η  which is the function of E is introduced into Eq.(50). 

 
  ΨEKΨη   (51) 

When η  becomes 1, Eq. (51) is equal to Eq.(50). Since the true energy eigenvalue E is not 

 known, we start with an estimated energy and determine the corresponding eigenvalue η . Then 

the energy E is varied such that η  approaches the value 1. 

Technique of Energy Search Program 

Now to search the binding energy, the natures of η and E are needed to know. The 

arbitrary energy is initialized using Eq.(7) for the calculation with partial wave decomposition 

method. The arbitrary input energy E1 and E2 are introduced. The E1 and E2 are upper bound and 

lower bound absolute value of energy. The input energy is define as E = (E1+E2)/2. If the value of 

η is less than 1, we set E2 should be E and E1 is kept.  If η is greater than 1, we set E1 should be  

E and E2 is kept. Then, the η value is searched by iteration.  According to this procedure, the gap 

between E1 and E2 is narrower and narrower and η approaches to 1. In this way, the value of         
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η converges to 1 and the corresponding energy is obtained. It is true energy for the deuteron. This 

procedure is written in program code. For the calculation without partial wave decomposition 

method, Eq.(30) is used to calculate the deuteron binding energy. The parameter set for Yukawa 

type Malfliet-Tjon III potential is shown in Table 1. The discretization parameters which 

converge the deuteron binding energy by changing the number of grid points are shown in Table 

2 and Table 3.  

Table 1  The parameter set for Yukawa type Malfliet-Tjon III potential 

VA (MeV fm)  A (fm
-1

) VR (MeV fm)  R (fm
-1

) 

- 626.822 1.55 1438.317 3.11 

 

Table 2  The discretization parameters for partial wave decomposition 

P0 (fm
-1

) pmax (fm
-1

) pcut (fm
-1

) N1 N2 BE (MeV) 

0.00 5.0 60.0 20 20 2.2283 

 

Table 3  The discretization parameters for without partial wave decomposition 

P0 (fm
-1

) pmid (fm
-1

) pmax (fm
-1

) Np Nx BE (MeV) 

0.00 3.0 30.0 26 14 2.2335 

 

 

Results 

According to the numerical result, it is found that the binding energy of deuteron is       

2.2283 MeV by using with partial wave decomposition method and 2.2335 MeV by using 

without partial wave decomposition method. Our calculated results are compared with the 

experimental result and the results calculated by other theoretical groups.  Comparison of 

deuteron binding energies is shown in Table 4. 

Table 4   Comparison of deuteron binding energies  

Potential Types Binding Energy (MeV) 

Nijmegen I 2.2245 

Nijmegen II 2.2245 

Nijmegen 93 2.2245 

CD-Bonn 2.2245 

Malfliet-Tjon  III  2.2300 

Malfliet-Tjon  IV 2.2300 

Experimental result 2.2245 

Malfliet-Tjon  III (Our result using with 

partial wave decomposition method) 

2.2283 

Malfliet-Tjon  III (Our result using without 

partial wave decomposition method) 

2.2335 
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Discussion 

Our calculated deuteron binding energy by using with partial wave decomposition 

method is 2.2283 MeV and it is about 4 keV greater than the experimental result and the results 

calculated by Nijmegen and CD-Bonn groups.  This could be the fact that the potentials 

(Nijmegen I, Nijmegen II, Nijmegen 93 and CD-Bonn) which are used by theoretical groups are 

realistic potentials. These potentials are fitted to the experimental data and considered including 

spin and isospin. But the Malfliet-Tjon III potential which is used in this calculation is a 

phenomenological potential. This potential can be adjusted the parameter set. Our calculated 

result is in good agreement in two decimal places with the results calculated by Malfliet-Tjon 

group using Malfliet-Tjon type III and IV potentials. In this calculation spin and isospin are not 

considered. Only for S-state (ℓ= 0) is calculated. Our calculated deuteron binding energy by 

using without partial wave decomposition method is 2.2335 MeV and it is about 9 keV greater 

than the experimental result and the results calculated by Nijmegen and CD-Bonn groups. Our 

calculated result is in good agreement in two decimal places with the results calculated by 

Malfliet-Tjon group. Our results calculated by using two methods are slightly different. This will 

be the fact that higher partial waves are needed to consider in the calculation by using partial 

wave decomposition method. But the deuteron binding is directly calculated and no need to 

consider partial waves in the calculation by using without partial wave decomposition method. 
 

Conclusion 

 The two-body problem which is the simplest and one can understand the nucleon-nucleon 

interaction. Two-body forces are basic to study three-body and many-body problems. The 

Lippmann-Schwinger equation is used in the calculations of two-body bound state and scattering 

process. At low energies in the MeV and the few tenth of MeV region very few angular momenta 

contribute to the nucleon-nucleon (N-N) scattering process.  Consequently a description using 

angular momentum decomposition is an adequate tool for carrying out scattering calculations. 

However, at intermediate energies, energies of a few hundred MeV and higher energies very 

many angular momenta contribute to the scattering amplitude.  In these energy domains those 

individual contributions to the scattering amplitude for a fixed high angular momentum oscillate 

strongly in angle. The without angular momentum decomposition method is suitable for the 

studying of high energy N-N interaction. 
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