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Abstract 

Attempts have been made to implement simple simulations of MHD in star 

formations. Some simple and tractable numerical method is utilized to make 

the simulation more realistic and physically acceptable. Detailed coding are 

given in the Appendix. 
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Introduction 

 The magnetohydrodynamics is the study of the magnetic properties 

and behavior of electrically conducting fluids. Examples of such 

magnetofluids include plasmas, liquid metals, salt water, and electrolytes. The 

word “magnetohydrodynamics” is derived from magneto-meaning magnetic 

field, hydro-meaning water, and dynamics meaning movement. The field of 

MHD was initiated by Hannes Alfven, for which he received the nobel Prize 

in Physics in 1970. 

 The fundamental concept behind MHD is that magnetic fields can 

induce currents in a moving conductive fluid, which in turn polarizes the fluid 

and reciprocally changes the magnetic field itself. The set of equations that 

describe MHD are a combination of the Navier-Strokes equations of fluid 

dynamics and Maxwell’s equations of electromagnetism. These differential 

equations must be solved simultaneously, either analytically or numerically. 

 

The Equations of Ideal MHD 

The equations of ideal MHD describe the movement of a compressible 

conducting fluid subject to magnetic fields. In ideal MHD all dissipative 

processes are neglected, meaning that the fluid possesses no viscosity and its 

conductivity is assumed to be infinite. The ideal MHD equations (Strang, 

1968).  
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expressing the conservation of mass, momentum, energy and magnetic flux, 

respectively. Here   is the mass density, v  the velocity and 

22

2
2 b

veE 


 the total energy density being, the sum of internal, kinetic 

and magnetic energy densities. The magnetic field is given by bB 4 and 

2

2b
pPtot  is the total pressure, being the sum of the gas pressure and the 

magnetic pressure. For the equation of state (EoS) one assumes an ideal gas 

law 

)5(),1(  ep  

where   is the ratio of specific heats. General EoSs can be included, which is 

especially important for the simulation of CCSN where the EoS has to 

describe stellar matter in the very broad range of conditions prevailing during 

this event. The right hand side of the momentum and energy conservation 

equations detail the effect of gravitational forces onto the conserved variables. 

The MHD equation (1) to equation (4) conserve the divergence of the 

magnetic field so that an initial condition 

)6(0.  b  

remains true, consistent with the physical fact that magnetic monopoles have 

never been observed. 
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Numerical Solution of the MHD Equations 

The MHD equation form a set of non-linear hyperbolic equations, 

which can in general only be solved by numerical means. Before we start 

describing the individual solution operators, we first introduce our notation. 

We discretise time into discrete steps 
nt and space into finite volumes or 

cells 
kjiV ,,

where n  labels the different time levels and the triple ),,( kji

denotes a particular cell. The vector T

yx Evvu ),,,(  denotes the 

conserved fluid variables. The solution vector kji
nu ,, contains the spatially 

averaged values of the conserved variables at time t  in cell 
kjiV ,,
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where the cell volume zyxV kji ,,
 is given by the assumed constant cell 

dimensions .,, 2/12/12/12/12/12/1   iiiiii zzzyyxxx  Half-integer 

indices denote the intercell boundary. Further we define the cell face averaged 

magnetic field components at time t
 
by 
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where zyS kji  ,,2/1
denotes the cell face of cell 

kjiV ,,
located at 2/1ix and 

spanned by the zone increments y  and .z  

In an operator-split scheme the solution algorithm to the ideal MHD equations 

can be summarized as 
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are the forward and backward operator for one time step. The operators 
zyxL ,,

evolve the fluid and account for the source terms, while the B  operators 

evolve the magnetic field. If the individual operators are second order 

accurate, then the application of the forward followed by the backward 

operator is second order accurate in time (Landau & Lifschitz, 1991). The 

numerical solution algorithm to the MHD equations is explicit. Therefore we 

impose the following time step 
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is the maximum speed at which information can travel in the whole 

computational domain in direction zyxd ,,  being the sum of the velocity 

component in d  and the speed of the fast magnetosonic waves Fc . We 

typically set the CFL number k to 0.75. 

Solving the Fluid MHD Equations 

The evolution of the fluid variables u in the x -direction, we neglect 

the source terms from gravity. During this process the magnetic field is held 
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constant and interpolated to cell centers. Then mass, momentum and energy 

conservation in x -direction can be written as 
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is the flux vector. 

Integrating equation (16) over a cell 
kjiV ,,

gives 

)18(,0)(
1

,,2/1,,2/1

,,








 kjikji

kji
FF

xt

u
 

where the definition of the cell averaged values of equation (7) has been 

substituted and Gauss' theorem has been used. The numerical flux 
kjiF ,,2/1

represents an average flux of the conserved quantities through the surface 

kjiS ,,2/1
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at given time t . Equation (18) is a semi-discrete conservative scheme for the 

conservation law of equation (16). In the following we focus on obtaining the 

numerical fluxes in a stable and accurate manner. Time integration of the 

ordinary differential equation (18) will be addressed later in this subsection. 

Many schemes for the stable and accurate computation of the 

numerical fluxes have been devised in the literature. Godunov type methods 
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achieve this by solving either exact or approximate Riemann problems at cell 

interfaces (Godunov, 1959, Laney, 1998 & Toro, 1997). Through solving the 

Riemann problem, these methods ensure an upwind discretisation of the 

conservation law and hence achieve causal consistency. Due to the difficulty 

of solving the Riemann problem in the ideal MHD case, the algorithm of 

(Pen, Arras, & Wong, 2003) uses the relaxation scheme of (Jin & Xin, 1995). 

For detailed information on these type of methods we refer to (Jin & Xin, 

1995, LeVeque & Pelanti, 2001). The idea of the relaxation scheme is to 

replace a system like equation (18) by a larger system 
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called the relaxation system. Here, the relaxation rate   is a small positive 

parameter and 
2D  is a positive definite matrix. For small relaxation rates, 

system of equation (20) rapidly relaxes to the local equilibrium defined by 

).(uFw   A necessary condition for solutions of the relaxation system of 

equation (20) to converge in the small   limit to solutions of the original 

system of equation (20) is that the characteristic speeds of the hyperbolic part 

of equation (20) are at least as large or larger than the characteristic speeds in 

system of equation (16). This is the so-called subcharacteristic condition. 

As (Jin & Xin,1995) we choose IdD .  to be a diagonal matrix. In 

order to fulfill the subcharacteristic condition the diagonal element d or the 

so-called freezing speed is chosen to be 

)22(,Fx cvd   

where Fc  is the speed of the fast magnetosonic waves, i.e. the fastest wave 

propagation speed supported by the equations of ideal MHD. 
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The key point in the relaxation system is that in the local equilibrium limit it 

has a very simple characteristic structure 
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where Duw are then the characteristic variables. They travel with the 

“frozen” characteristic speeds D respectively. 

System of equation (23), (24) can be easily recast into an equation for u  and 

w . However, we are practically only interested in that for u  
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where 2/)( DuwF  denotes the right travelling waves and 

2/)( DuwF  the left travelling waves in the x -direction. In the following 

we shall drop the indices of the other directions. Since this defines an upwind 

direction for each wave component, a first order upwind scheme results from 

choosing 

  ii FF 2/1
 and 





  12/1 ii FF . In this case, the total flux at the cell 

interfaces is readily evaluated to become 
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where ).( iii uFwF  For D we use the freezing speed 

)27(),max( 1 ii ddd  

in order to satisfy the subcharacteristic condition. 
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Conclusion Remarks 

 In this paper, simple simulations for magnetohydrodynamics (MHD) 

have been presented using simple iteration and simple mathematica coding to 

study the numerical nature of MHD equations and it is simply observed that 

some of the numerical simulations give interesting 2D and 3D graphics which 

show the physical nature of the equations. 
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Appendix 

 
 
Figure 1: The profile of total pressure of the magnetic field in term of p and b. 

 

 
 
Figure 2: The profile of total energy of the magnetic field in term of ρ  and v. 
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Figure 3: The profile of solution vector         contains the spatially averaged 

values. 


