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QUANTUM AND CLASSICAL DERIVATIONS OF BLACK HOLE 
ENTROPY AND PHYSICAL MICROSTATES 
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Abstract 

Classical and quantum  mechanical  derivations of  black  hole  entropy  have  been studied in 
detail in the frame work of general  relativity ,thermodynamics and quantum  mechanics. The 
black hole entropy and area have been derived from classical thermodynamics. The relationship  
between  the classical and  quantum  formulas  can  be  shown  to  be similar to that of  black body  
radiation. Microstates of the black hole entropy and its physical implications have been 
investigated. Some applications of black hole entropy to astrophysics have also been presented. 
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Introduction 

When the core runs out of hydrogen fuel, it will contract under the weight of gravity. 
However, some hydrogen fusion will occur in the upper layers. As the core contracts, it heats up. 
This heats the upper layers, causing them to expand. As the outer layers expand, the radius of the 
star will increase and it will become a red giant. The radius of the red giant sun will be just 
beyond Earth’s orbit. At some point after this, the core will become hot enough to cause the 
helium to fuse into carbon. When the helium fuel runs out, the core will expand and cool. The 
upper layers will expand and eject material that will collect around the dying star to form a 
planetary nebula. Finally, the core will cool into a white dwarf and then eventually into a black 
dwarf. This entire process will take a few billion years. 

When the core runs out of hydrogen, these stars fuse helium into carbon just like the sun. 
However, after the helium is gone, their mass is enough to fuse carbon into heavier elements such 
as oxygen, neon, silicon, magnesium, sulfur and iron. Once the core has turned to iron, it can 
burn no longer. The star collapses by its own gravity and the iron core heats up. The core 
becomes so tightly packed that protons and electrons merge to form neutrons. 

In less than a second, the iron core, which is about the size of Earth, shrinks to a neutron 
core with a radius of about 6 miles (10 kilometers). The outer layers of the star fall inward on the 
neutron core, thereby crushing it further. The core heats to billions of degrees and explodes 
(supernova), thereby releasing large amounts of energy and material into space. The shock wave 
from the supernova can initiate star formation in other interstellar clouds. The remains of the core 
can form a neutron star or a black hole depending upon the mass of the original star. 

In the ordinary evolution of very massive stars, black holes can be formed. A star is 
essentially a gigantic nuclear reactor converting hydrogen to helium in a process called nuclear 
fusion. Think to the star as millions of hydrogen bombs going off at the same time, thereby 
producing enormous quantities of energy and enormous forces outward from the star. There is an 
equilibrium between the gravitational forces inward and the forces outward caused by the 
exploding gases. Eventually, when all the nuclear fuel is used, there is no longer an equilibrium 
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condition. The gravitational force causes the gas to become very compact. If the star is large 
enough, it is compressed below its Schwarzschild radius and a black hole is formed. For an 
evolving star to condense into a black hole it must be approximately 25 times the mass of the 
sun. When the star condenses to a black hole it does not stop at the event horizon but continues to 
reduce in size until it becomes a singularity, a point mass. That is, the entire mass of the star has 
condensed to the size of a point. 

A  star  that  was  initially  more  massive  than  about  20reaches the  end  of  its  life  and  
collapses, it may create a compact star whose properties differ dramatically from those of white 
dwarfs or neutron stars. Its greater mass can compress its core so much that pressure is unable to 
support it, and it totally collapses to form what astronomers call a black hole.(Bekenstein, J.D., 
1973) 

A black hole is at once the most simple and the most complex object. It is the most simple 
in that it is completely specified by its mass, spin, and charge. This remarkable fact is a 
consequence of the so called ‘No Hair Theorem’. It is the most complex in that it possesses a 
huge entropy. The entropy of a solar mass black hole is enormously bigger than the thermal 
entropy of the star that might have collapsed to form it. Entropy gives an account of the number 
of microscopic states of a system. 

Black holes have very strange properties, and to understand them one needs to review the 
concept of escape velocity. For a body of mass M and at a radius R from the center of that object 
, the escape velocity𝑣௘௦௖ , for an object to travel away from the body is  

 𝑣௘௦௖=ට
ଶீெ

ோ
 

             Where,    G  = the gravitational constant (6.67× 10ିଵଵNm2/ kg2) 

     𝑣௘௦௖= the escape velocity (meter per seconds) 

                            R   = radius (meters) 

                           M   = mass (kilograms) 

 One can see from the formula that the escape velocity for a body of a given mass will be 
larger at a smaller radius. When the escape velocity is greater than the speed of light, such an 
object would become a black hole. (Raine D & Thomas E., 2005) 

History of Black Hole Entropy 

 In 1972, Bekenstein was the first to suggest that black holes should have a well-defined 
entropy. He wrote that a black hole’s entropy was proportional to the area of its (the black hole’s) 
event horizon. Bekenstein also formulated the generalized second law of thermodynamics, black 
hole thermodynamics, for systems including black holes. Based on his black-hole 
thermodynamics work, Bekenstein also demonstrated the Bekenstein bound: there is a maximum 
to the amount of information that can potentially be stored in a given finite region of space which 
has a finite amount of energy. In 1982, Bekenstein developed a rigorous framework to generalize 
the laws of electromagnetism to handle inconstant physical constants. His framework replaces 
the fine-structure constant by a scalar field. However, this framework for changing constants did 
not incorporate gravity. In 2004, Bekenstein boosted Mordehai Milgrom’s theory of Modified 
Newtonian Dynamics (MOND) by developing a relativistic version.  
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Meaning of Black Hole Entropy 

 Black holes are really thermodynamic systems with an actual temperature and entropy. 
The entropy should be the logarithm of the number of independent states of the black hole.  

 The Fact that the black hole entropy is even finite is already puzzling. A box of radiation 
at fixed energy and volume has a finite entropy because the box imposes a long wavelength cut 
off and the total energy imposes a short wavelength cut off. The Hilbert space describing the 
radiation field inside the box at fixed energy is thus finite dimensional, and the microcanonical 
entropy is just the logarithm of its dimension. A black hole in a box at fixed energy would also 
have a short wavelength cutoff (at the box) but, as emphasized by Hooft, according to standard 
quantum field theory it has no long wavelength cutoff (at the box). The reason is that the horizon 
is an infinite redshift surface. The wave vector of any outgoing mode diverges at the horizon, and 
is red shifted down to a finite value at the box. The entropy of each radiation field around a black 
hole is therefore infinite due to a divergence in the mode density at the horizon, so it seems the 
black hole entropy must also diverge. This divergence is equivalent to a divergence in the 

renormalization of Newton’s constant, or rather in 
ଵ

ீ
 .Thus one point of view is that it should be 

absorbed by “counter terms”, and only the total, renormalized entropy is relevant.(Shapiro, S.L , 
1983) 

Laws of Black Hole Mechanics 

1. Zeroth Law : The temperature T of body at thermal equilibrium is constant throughout the  
body. Heat will flow from hot spots to the cold spots. For stationary black hole, one can 
show that surface gravity k is constant on the event horizon. This is obvious for spherically 
symmetric horizons but is true also more generally for non-spherical horizons of spinning 
black holes. 

2. First Law:  Energy is conserved, dJdQdSTdE   , where E is the energy  , Q is 

the charge with chemical potential 𝜇 and J is the spin with chemical potential Ω. For black 

hole , one has dJdQdAdM  



8
.For a  Schwarzschild black hole one has 

0  because there is no charge or spin. 

3. Second Law: The total entropy S near decreases, ΔS ≥ 0. For black holes one can prove 
the area theorem that the net area in any process never decreases, ΔA ≥ 0. For example, 
two Schwarzschild black holes with masses 𝑀ଵ and 𝑀ଶ can coalesce to form a bigger 
black hole of mass M. So the area is proportional to the square of the mass and (𝑀ଵ +

 𝑀ଶ)ଶ ≥  𝑀ଵ
ଶ + 𝑀ଶ

ଶ. 

Derivation of Black Hole Entropy 

 If a black hole has energy E and entropy S, then it must also have temperature T is given 
by 

     
E

S

T 



1

 

Where, T = temperature, E = energy, S = entropy 
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For a Schwarzschild black hole, the area and the entropy scales as S~𝑀ଶ. 

M
M

M

M

S

T










21

     (1) 

     
S

M
T





dS

dM
  

     TdSdM         (2) 

Where, HA = the area of event horizon 

For Schwarzschild Black Hole’s, 

   2216 MGAH  )2( GMrH         (3)  

Differentiating equation (3) with respect of M. 

MG
dM

dAH 2216   

MdMGdAH
232  

   
MG

dA
dM H

232
        (4) 

For Schwarzschild black hole, 

     
GM4

1
  

     G
M

4
1
   (5) 

Substituting equation (5) in equation (6) 




G
G

dA
dM H 4

32 2
  

G

dAH



8

  

HdA
G






8
       (6) 

 Hawking calculation showed that the spectrum emitted by the black hole is precisely 
thermal with temperature, 

,
2


T  

Since     
GM

T
GM 


8

,
4

1 
      (7) 

Substituting equation (7) in equation (2), one gets 
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dA
G

GM
dS





 


8

8
  

     
dA

M




  

     dA
M

GM 


4

1
 

            dA
G

dS
4

1
       (8) 

Taking integration to both sides of equation (8), one gets 

  dA
G

dS
4

1
 

G

A
S

4
  

Since, G=  =1(in natural units), on now gets 

     
4

A
S    (9) 

Theoretical Validity of S=F(A) 

 The first law of thermodynamics applied to the system black hole surrounding may be 
written as 

     dWTdSdM        (10) 

where,  W= work done on the black hole 

             M= mass of the black hole 

              T= temperature 

              S= entropy 

 The work done due to changes in angular momentum and electric charge is  

 dJdQdW      (11) 

where,   the electric potential on the event horizon 

  the angular velocity on the event horizon 

              J = angular momentum of the black hole  

              Q= charge of the black hole  

Substituting equation (11) in equation (10) gives, 

    dJdQdMTdS        (12) 

    
A

Qr
4

,
A

a4
       (13) 
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where  222 aQMMr  and )(4 22 arA   ,
M

J
a   

 r radius of  the event horizon  

 A area of the event horizon  

             a = specific angular momentum  

The first law of black hole mechanics: 

   dJdQdMdA 
8

1

     
(14) 

where  is the surface gravity given by 

     
QJA

M

,

8 









       (15) 

 

Kerr-Newman solution is given by, 

    
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




      
(16) 

According to equation (15) and (16), one has 

  
A

aQM

A

M

QJ

222

,

4
8


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












     

(17) 

Combining equation (12) and (14) gives 

    dSTdA 
8

1
.      (18) 

Integrating both sides of equation (18), one gets 

      dSTdA


8
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     TS
A




8

      (19) 

     
T

A
S




8


      
 (20) 

The black hole entropy must be a definite function of its horizon area. Therefore, it reads:  
     )(AFS        (21) 

Microscopic Derivation of the Black Hole Entropy 

The Bekenstein-Hawking black hole entropy is given by 

G

rGMl

G

Area
S

22 216 



    (22) 

where,   M = mass , 

 J  =angular momentum  

 G = gravitational constant  

 r radius of  the event horizon  

 l 2= - 1/( reciprocal of the cosmological constant ) (l >>G) 

It is convenient to choose the additive constants in L0 and 0L , so that they vanish for the  

M = J = 0 black hole. One then has 

)(
1

00 LL
l

M 
     

(23) 

while the angular momentum is 

00 LLJ  .                                                     (24) 

This is notthe same as AdS3 (three–dimensional anti-de Sitter space)metric which has negative 

mass     
G

M
8

1
 .  

One wishes to count the number of excitations of the AdS3 (three–dimensional anti-de 
Sitter space) vacuum with mass M and angular momentum J in the semiclassical regime of large 
M. The explicit computation of the central charge cis 

G

l
c

2

3
                                                                     (25) 

According to (23) and (25) large M implies 

,cnn LR         (26) 

where nR (nL) is the eigenvalue of L0 ( 0L ). The asymptotic growth of the number states of a 

conformal field theory with central charge c is then given by (J. A. Cardy, Nucl 1986). 
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6
2

6
2 LR cncn

S   .                (27) 

Using (25) , (23) and (24) , the expression for blackhole microstates can be written as 

   
,

22 G

JlMl

G

JlMl
S





                                         (28) 

 And it is in agreement with the Bekenstein-Hawkingblack hole entropy result (22) for the 
BTZ   (Banados-Teitelboim- Zanelli) black holeentropy. 

 

 

Figure 1  Snapshot Evolution of the surface gravity of the Kerr-Newmann black hole with the 
constraint M2>Q2>a2. 
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Figure 2  The Profile of Black Hole Entropy in terms of Radius of Event Horizon,M and l. 

 

Figure 3  3D Profile of Black hole entropy in terms of M and J. 

 

Concluding Remarks 

 In this present works, the detailed derivation for black hole entropy in classical aspect has 
been given and it is found to be the one fourth of the black hole’s surface area. Quantum 
mechanical derivation and some interesting physical interpretations are to be implemented. 

 Theoretical validity of S=F(A), i.e., the entropy is simply a function of area has been 
proved using the basic thermodynamic entities like temperature, mass, surface gravity, area of a 
black hole.. The nature of surface gravity has been visualized in snapshot 3-D evolution of the 

surface gravity of the Kerr-Newmann black hole with the constraint 222 aQM   and the 

discrete nature of the evolution of surface gravity can be observed.The blackhole microstates 
treatment has been worked out and the result is in well agreement with BTZ blackhole result. 
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