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Abstract 

Fundamental motion of quantum mechanical harmonic oscillator and      chaotic quantum linear 
map has been investigated using numerical methods and visualization of the results. Periodic 
chaotic nature is found in visualization of quantum linear map. 
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Introduction 

Numerical solutions of the time-independent Schrodinger equation have been discussed in 
various conditions. These solutions utilize numerical techniques for solving a differential time 
evolution for the time-dependent Schrodinger equation. Many quantum mechanical research 
problems that are answerable to solution (for example, the behavior of electrons on a small 
lattice) by using matrix mechanics. In the quantum linear map, although the square of 
commutator can increase exponentially with time, a simple operator does not scramble but 
performs chaotic motion in the operator basis space determined by the classical linear map. 

The Formalism 

The harmonic oscillator is also answerable to analytical solution. Unlike the infinite square 
well the solutions are unfamiliar and concerned in the initial state. 

The infinite square wellis defined as 
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The Hamiltonian is given by 
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where m  is the mass of the particle.  

The eigenstates are well known: 
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with eigenvalues, 
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The quantum number ,...3,2,1n takes on a positive integer value.  

The Harmonic Oscillator 

For the infinite square well, the harmonic oscillator potential is
2

22 xm
VHO


 . In the 

following all units of distance will be in terms of the square well width a , and all units of energy 

will be in terms of the (unperturbed) ground state, )0(
1E .We will use lower case letters to denote 

dimensionless energies. The potential HOV  can be written in terms of the infinite square well 

length and energy scales as 
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Figure 1  3D Profile of HOv  in terms of  and x. 

so that the dimensionless parameter )0(
1E


determines the stiffness of the harmonic oscillator 

potential. We expect that for low energy states (the ground state), the solution should be identical 
to that of the harmonic potential alone, because the wave function will be sufficiently restricted 
to the central region of the harmonic oscillator potential so that it will not feel the walls of the 
infinite square well. High energy states will not be well described by the harmonic oscillator 
results, because they will be primarily governed by the infinite square well. We first use  
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with the potential given by equation (5). The result is 
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The nmg remain of order unity close to the diagonal, but for large n  the diagonal elements grow as 
2n , so the off-diagonal elements become negligible in comparison. 

Quantum Linear Map 

The operator scrambling in the quantum linear map is an instructive quantum 
mechanical model with many properties exactly solvable. Before we study this model in detail, 
we first briefly review the classical linear map. 

The classical linear map is the linear automorphism of the unit torus phase space given 

by 
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where the matrix ),2(
d
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    M ZSL

c

a

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
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 . The determinant is equal to one so that this map isarea 

preserving (canonical). Also it preserves the periodic boundary condition of the torus as M has 

integer valued entries. The Lyapunov exponents  of the linear map are given by the logarithm 

of the eigenvalues of M. When TrM > 2, this map is hyperbolic and has )0(0    . The 

chaotic linear map is known to be fully ergodic and mixing. If consider a simple case with a = 2; 

b = 1; c = 3; d = 2 and )32log(  .The linear map can be quantized on the square torus with 

finite Hilbert space. We define nq and np  to be position and momentum eigenstates with n=0, 

1, … ,K-1,where K  is dimension of the Hilbert space. The position and momentum translation 

operators are defined through 1ˆ  nn qq and 1ˆ  nn pp . Hence ̂ and ̂  can be 

represented as KZ rotor operators, 
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where 
Kie /2   .̂ and̂  satisfy 1ˆˆ  KK  with the commutation relation given by

  . 

In the position representation, the quantum propagator for the quantum linear map with 
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is obtained by path integral method and takes this form  
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where 1,...,1,0,  Kqq label the position eigenstates. For any classical observable, one 

can associate a quantum observable operator )(ˆ fO , which respects 

)(ˆˆ)(ˆˆ † MfOUfOU   

This equation usually holds in the limit N . However due to the map being linear here, it 
holds even at finite N . Therefore, for ̂ and ̂  ,  

 ˆˆ~ˆ ˆˆ 2† UU 23† ˆˆ~ˆ ̂ˆ UU .        (12) 

This result indicates that for any operator of the form
pqO  ˆˆˆ   under unitary time 

evolution, it performs chaotic motion in the operator basis space spanned by nm
mn ̂ (with 

1,...,1,0,  Knm ) which satisfies nnmmnmmn KBBTr   ,,
† ˆˆ  . The evolution of ),( pq is 

determined by the classical linear map defined in equation (9) and gives rise to the exponential 

growth of the square of commutator   †ˆ),(ˆˆ),(ˆ)( OtOOtOtC  ,i.e., t2e~C(t)  when t is smaller 

than the Lyapunov time  /log KtL .When Ett  , the quantum correction becomes important 

and )(tC stops to increase exponentially. 

The exponential growth of )(tC has a classical origin and is not related withthe operator 

scrambling. Under unitary time evolution, )(ˆ tO is always a basis operator anddoes not become 

more complicated. 

To realize operator scrambling, we consider the quantum linear map perturbed by 
anonlinear shear. The new composite Floquet operator is, 

21
ˆˆˆ UUU                                   (13) 

where 2Û  is the quantum linear map defined in equation(11) and 1Û describes a nonlinear shear 
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which will not have much influence on the early time dynamics as long as k  is small. 

Conclusion 

 In this paper we describe the Hamiltonian equation, harmonic oscillator and the quantum 
linear map. In the quantum linear map although the square of the commutator )(tC can grow 

exponentially with the time and the quantum operator does not scramble at all. The operator 
scrambling can occur once if one makes some modification in the Floquetoperator. So that the 
quantum chaos is not always associated with the exponential growth of the square of the 
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commutator )(tC . The non-linear shear equation simply shows that only at some selection point 

of the dynamical variable, it gives chaotic nature. Visualization gives this nature clearly.   

 

 

Figure 2  3D Profile of qUq 1
ˆ in terms of k and q (Real). 

 

 

Figure 3  3D Profile of  qUq 1
ˆ in terms of k and q (Imagiary). 
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