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RAINBOW NUMBERS WITH INDEPENDENT CYCLES IN Km,n  

DEPENDING ON RAINBOW BIPARTITE GRAPHS* 

Oothan Nweit1, Kyawt Kyawt Aye2, Pann Zar Nyo3 

Abstract 

An edge-colored graph G is called a rainbow graph if all the colors on its edges are 

distinct. Let  be a family graph of an edge-colored graph G such as .G   The rainbow graph 

denoted by ( , )rb G   is related to the anti-Ramsey number ( , )AR G  . The anti-Ramsey 

( , ),AR G  introduced by Erdős et al., is the maximum number of colors in an edge coloring graph 

of G  without rainbow copy of any graph in G. Evidently, ( , ) ( , ) 1rb G AR G    , ( , )rb G   is 

the rainbow number of   in any edge coloring graph G. 

In this paper, we consider the existence of rainbow number with independent cycles in the 

complete bipartite graphs, denoted by Km,n, order m and n with bipartitions (M, N). For this result, 

we endeavor to construct the complete bipartite graphs on the multi-graphs without independent 

cycles. Denote that the rainbow number rb (Km,n, ) for 5 m n . Let 
2  denote the family of 

graphs containing two independent cycles. The rainbow number rb (Km,n, ) is the minimum 

number of colors such that ,2
  m nK , then any edge coloring of Km,n with at least distinct c colors 

contains a rainbow copy of 
2. Without loss of generality, we obtain the result for any 5, m n  

rb (Km,n, ) = 3m + n – 2.  Finally, we hope the main result will be supported at the fiber optic 

communications network in real life for our country.  
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Introduction 

  Now we currently study edge colorings with rainbow numbers to do our paper  

completely. Here, first we introduce that an edge-colored graph is a graph that its edges have  

been colored somehow with distinct colors, we can denote it as rainbow edge-colored graph. 

  Again, we introduce the rainbow numbers for independent cycles in an edge-colored 

graph. We studied (Bondy & Murty, 1976) terminology and notation to consider finite and 

simple graphs. (Bondy & Murty, 1976) is completely fulfilled for us to study the basic points in 

finite and simple graphs. Let   be a family of graphs and G be an edge coloring graph and Kn be 

a complete graph. To determine the rainbow numbers rb (Kn,  ) for our conditions, first we 

studied anti-Ramsey number AR (Kn, ). The anti-Ramsey number was introduced by Eros, 

Simonovits and Sos in the 1970s (Erdős et al., 1973). They showed that these are closely related 

to Turan number, ex (Kn,  )  which means that takes one edge of each color in an edge coloring 

of Kn, one can show that AR (Kn, )  ex (Kn,  ).    consists of a single graph H, we can write 

AR (Kn, ) and ex (Kn,  ). Here, we studied the anti-Ramsey number for a cycle conjectured in 

(Erdős et al., 1973) by Erdos et al. that AR (Kn, C3) = n – 1 and then the anti-Ramsey number for 

cycles, AR (Kn, Ck), was determined for 6k   in (Alon, 1983; Erdős et al., 1973). Continuously, 

we studied that the rainbow numbers for cycles, rb (Kn, C3) = n in (Chartrand & Zhang, 2009). 

We studied that rainbow numbers for matching in plane triangulation in (Jendrol et al., 2014).  

  The rainbow numbers is related to the anti-Ramsey numbers that equivalently,  

rb (G, H) = AR (G, H) + 1. Therefore, in our paper to search rainbow numbers, we make anti-

Ramsey number focused. Denote by k  the family of multi-graphs that contain k vertex disjoint 
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cycles, vertex disjoint cycles are said to be independent cycles. The family of multi- graph does not 

belong to  k is denoted by k , it is clear that is just the family of forests. It is proved in (Jin & Li, 

2009) that anti-Ramsey number AR (Kn, 2 ) = 2n – 2 for 6n  . Using the extremal structures 

theorem for graphs in  2 (Bollobas, 1978), we determine that rainbow number rb (Km, n, 2 ) for 

5m n  . 

 

Rainbow Bipartite Graphs without Independent Cycles 

2.1 Extremal structures theorem for graphs without independent cycles 

     First, we present extremal structures for the graphs which do not contain two independent 

cycles. 

Theorem 2.1 (Bollobas, 1978) Let G be a multi-graph without two independent cycles. Suppose 

that ( ) 3G   and there is no any vertex contained in all the cycles of G. Then one of the 

following six assertions holds (see Figure 1). 

(1) G has three vertices and multiple edges joining every pair of the vertices. 

(2) G is a K4 in which one of the triangles may have multiple edges. 

(3) 5G K . 

(4) G is 5K 
 such that some of the edges not adjacent to the missing edge may be 

multiple edges. 

(5) G is a wheel whose spokes may be multiple edges. 

(6) G is obtained from K3,p by adding vertices or multiple edges joining vertices in the 

first class. 

 

 

Figure 1:   The graphs without independent cycles 

  cG

   

.    .   . 
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Theorem 2.2 (Bollobas, 1978) A multi-graph G does not contain two independent cycles if and 

only if either it contains a vertex 0x  such that 0G x  is a forest, or it can be obtained from a 

subdivision 0G  of a graph listed in Figure 1 by adding a forest and at most one edge joining each 

tree of the forest to 0G . 

In general, we have the following result.  

Lemma 2.3  Let m n  and G be a simple bipartite graph of order m  and n  with size q  

without two independent cycles. If G contains a vertex 0x such that 0G x  is a forest, then 

2 2 3q m n    

By Theorem 2.1, we have the following lemma. 

Lemma 2.4  Let m n and G be a simple bipartite graph of size q with m and n vertices in each 

partite set. Suppose that G can be obtained from a subdivision 0G  of a graph listed in Figure 1 by 

adding a forest and at most one edge joining each tree of the forest to 0G . Then one of the 

followings holds. 

(1)  0G  is a subdivision of aG  , and then 2 2q m n   . 

(2)  0G  is a subdivision of bG  , and then 2 1q m n   . 

(3)  0G  is a subdivision of cG  , and then 5q m n   . 

(4)  0G  is a subdivision of dG  , and then 2q m n  . 

(5)  0G  is a subdivision of eG , and then 2 2q m n   . 

(6)  0G  is a subdivision of fG  , and then 3 3q m n   . Furthermore, the equality holds if 

and only if G can be obtained from 3, pK  by adding edges or the multiple edges 

joining vertices in the first class. 

Proof: We prove the lemma by the induction on m + n. When 5m n  , the lemma holds 

obviously. Assume that the lemma holds for the graph of order less than m + n. Now consider the 

graph G. Let G = (M, N: E) with |M | = m, |N| = n and then m n .  

Case 1. 0G  is a subdivision of  aG . 

 Suppose that aG  is a multi-graph containing three vertices such as u, v, w. Take a vertex 

x G . If ( ) 1,G  then | ( ) | 1V G x m n    . Let ( ) 0.G   Considering the cases  x M or 

,x N we have 

 | ( ) | | ( ) | max 2( 1) 2, 2 ( 1) 2

                               = 2 3< 2 2,

E G E G x m n m n

m n m n

        

   
 

as desired. 

 

 

 If ( ) 1,G  by the same reason we have  
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 | ( ) | | ( ) | 1 max 2( 1) 2 1, 2 ( 1) 2 1

                                    = 2 2,

E G E G x m n m n

m n

           

 
 

as desired again. 

 So let ( ) 2.G   By the Theorem 2.2 and then since aG  is a multi-graph and ( ) 2,G   

all vertices of  , ,G u v w lie on (multi)-edges between u, v, w. Now, considering the possible 

vertices belonging to M and N, we distinguish the following subcases. 

Subcase 1.1  , ,u v w N . 

There are at most m (multi)-edges in 0G . Here, each vertex of M is of degree two. Hence, we 

have that 2q m  and we are done. 

Subcase 1.2  u M and  , .v w N  

 There are at most m – 1 (multi)-edges in 0G . Here, u is degree of n and each vertex of M – u is 

of degree two. Hence, we obtain that 2( 1) 2 2q m n m n       and we are done. 

Subcase 1.3  ,u v M and  .w N  

Here, there are at most n – 1 (multi)-edges in 0G . Here, w is degree of m and each vertex of  

N – w  is of degree two. Hence, we obtain that 2( 1) 2 2q n m n m       and we are done. 

Subcase 1.4 , ,u v w M . 

There are at most n (multi)-edges in 0G . Here, each vertex of N is of degree two. Hence, we can 

deduce that 2q n  and we are done.           / 

Furthermore, these cases such as Case 2. 0G  is a subdivision of  bG , Case 3. 0G  is a 

subdivision of  cG , Case 4. 0G  is a subdivision of  dG , and Case 5. 0G  is a subdivision of  eG  

can be proved by the similar analysis as above and we omit the details. 

Then, we continue to prove the following. 

Case 6. 0G  is a subdivision of fG . 

Given that 3,f pG K   by adding edges or the (multi)-edges joining vertices in the first class. To 

say fG G . Denote by ( , : )fG U V E .  So, let U = {u, v, w} be the first class of fG and then 

 1 2, ,..., pV x x x  be the second class of fG . Take a vertex x G . If ( ) 0G  ,  then 

| ( ) | 1V G x m n    . Considering the cases x M  or .x N  

( ) ( )E G E G x   max 3( 1) 3, 3 ( 1) 3m n m n       3 4m n    < 3 3m n  , 

as desired. 

If ( ) 1G  , by the same reason we have 

( ) ( )E G E G x  +1  max 3( 1) 3 1,3 ( 1) 3 1m n m n         3 3,m n    

as desired again. 
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So let ( ) 2G  . Since fG is a multi-graph and ( ) 2G  , all vertices of \ ( , )G U V lie on (multi)-

edges among the vertices of U. Now, considering the possible vertices u, v, w belonging to M and 

N, it is enough reason to provide confirmation. So, we distinguish the following subcases. 

Subcase 6.1 , ,u v w N  

Here, if V M , there are at most m – p (multi)-edges in 0G . It is obviously that there are  

at least one vertex of M \ N on any (multi)-edges. Here, we need to consider the number of 

vertices of p, since G is a bipartite graph, 

                                            ( ) ( )d x d y
x M y N

 
 

 

                                       2( ) 3 2( 3) 3m p p n p     . 

Therefore, 3m n p   , 3 p n m   . 

Continuously, in details we determine the number of vertices in V, so let x p xV V V   such that 

x-vertices in xV  and 0 .x p   Now, we consider the possible vertices in Vx and p xV  belonging 

to M and N so we again distinguish the following sub-subcases. 

Sub-subcase 6.1.1 xV N and .p xV M   

Here, we have at most m – p + x (multi)-edges in 0G . Each vertex of \ p xM V  is of degree two 

and each vertex of p xV  is three. Hence, we have that  

2( ( )) 3( )q m p x p x      2m p x   2 (since 0 )m n x p n      

and done. 

Sub-subcase 6.1.2 xV M and .p xV N   

Here we have at most m – x (multi)-edges in 0G . Each vertex of \ xM V  is of degree two and each 

vertex of xV is three. Hence, we have that  

   2( ) 3 2 2q m x x m p m n         

and done. 

Here, if ,V N  there are at most m (multi)-edges in 0G and each vertex of M is of degree two. 

Hence, we have that 2q m  and done. 

Subcase 6.2 , , .u v w M   

Here, if V  N, there are at most n – p (multi)-edges in G0. It is obviously that there are at least 

one vertex of N\Vp on any (multi)-edges. Here, we need to consider the number of vertices of p. 

Since G is a bipartite graph,  

( ) ( )d x d y
x M y N

 
 

 

2(m – 3) + 3p   2(n – p) + 3p.  

Since m   n, so m   n – p + 3, p   2. 

Here, also we distinguish in details the number of vertices in V by the same reason as above 

subcase, so we have the following sub-subcases.  

Sub-subcase 6.2.1 xV N and .p xV M   
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Here, we have at most n –x (multi)-edges in 0G . Each vertex of \ xN V is of degree two and each 

vertex of xV is three. Hence, we have that  

  q   2(n – x) + 3x   2n + p  

and done. 

Sub-subcase 6.2.2 xV M and .p xV N   

Here, we have at most m – p + x (multi)-edges in 0G  . Each vertex of \ p xN V  is of degree two 

and each vertex of p xV  is three. Hence, we have that 

  q   2(n – p + x) + 3(p – x) = 2n + p – x   2n + p   

and done. 

Here, if ,V M  then there are at most n (multi)-edges in G0 and each vertex of N is of degree 

two. Hence, we have that q   2n and done. 

Subcase 6.3 ,u v N and w M  

    Here, if V M , there are at most m – p – 1 (multi)-edges in 0G . By the summing of degree, 

                                      ( ) ( )d x d y
x M y N

 
 

 

                      2( 1) 3 2( 2) 2m p n p n p         

      2 2m n p   . 

So, 2 1n p m     

Here, also we distinguish in details the number of vertices in V by the same reason as above 

subcase. So, we have the following sub-subcases. 

Sub-subcase 6.3.1 xV N and .p xV M   

Here, 0 x p  , we have at most m – p + x (multi-)edges in 0G . Each vertex of \ ( )p xM V w  is 

of degree two and each vertex of p xV  is three and w is of n. Hence, we have that  

  q   2(m – p + x – 1) + 3(p – x) + n = 2m + n + p – x – 2   3m + n – 3    

and done. 

Sub-subcase 6.3.2 xV M and .p xV N   

Here, we have at most  m – x – 1 (multi)-edges in 0G  . Each vertex of \ ( )xM V w is of degree 

two and each vertex of xV is three and w is of degree n. Hence, we have that 

  q   2(m – x – 1) + 3x + n = 2m + n + x – 2   2m + n + p – 2  3m + n – 3  

and done. 

Here, if V N , then we obtain the same result as above. So, we omit the details. 

Subcase 6.4 u N and , .v w M  

Here, if ,V N  then there are at most n – p – 1 (multi)-edges in G0. By the sum degree, 

                                      ( ) ( )d x d y
x M y N

 
 
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                                2( 2) 2 2( 1) 3m p n p m p         

      2 2 .n m p    

So, 2 1.m p n     

Here, also we distinguish in details the number of vertices in V by the same reason as above 

subcase. So, we have the following sub-subcases. 

Sub-subcase 6.4.1 xV N and .p xV M   

Here, 0 x p  , we have at most n– x – 1 (multi)-edges in 0G . Each vertex of \ ( )xN V w is of 

degree two and each vertex of xV is three and w is of m. Hence, we have that  

  q   2(n – x – 1) + m + 3x = 2n + m + p – x – 2   3n + m – 3    

and done. 

Sub-subcase 6.4.2 xV M and .p xV N   

Here, we have at most n – p + x – 1 (multi)-edges in 0G  . Each vertex of \ ( )p xN V w  is of 

degree two and each vertex of 
p x

V


is three and w is of degree m. Hence, we have that 

  q   2(n – p +x – 1) + 3(p – x) + m = 2n + m + p – x – 2   2n + m + p – 2  3n + m – 3  

and done. 

Here, if ,V M then we obtain the same result as above. So, we omit the details. 

This completes the proof.            

More precisely, from the lemma above, we have the following theorem. 

 

Rainbow graphs with independent cycles in ,m nK  

            Let 2 be a family of the two independent cycles in a given graph G, then an edge 

coloring c of Km,n is induced by G and assigns one additional color to all the edges of G . Clearly, 

G is a spanning subgraph of Km,n, an edge coloring of Km,n induced by G has ( ) 1E G  colors. Let 

G be a complete bipartite graph with bi-partitions M N and M m  and N n , without loss 

of generality, in the following result we always assume .m n  

Theorem 3.1    For any , 25,  ( , ) 3 2m nm n rb K m n      . 

Proof: We shall prove the theorem by contradiction. In this theorem, we consider the family of 

graphs with two rainbow independent cycles, i.e., rainbow member of 2 in any complete 

bipartite graph Km,n with bipartition M N and M m  and N n , without loss of generality, 

.m n  

Now, we consider the Lower bound. 

 Here, we present an edge coloring of Km,n as follows. Take a copy of K3,m in Km,n and 

color its edges by distinct colors. For each vertex in 3,\ ( ),mN V K all the edges incident to it are 

colored by its own color. So, we get edges incident to it are colored by its own color. So, we get a 



230 J. Myanmar Acad. Arts Sci. 2023 Vol. XXI. No.2 
 

(3m + n – 3)-edge coloring of Km,n. Clearly, there is not any rainbow graph with two independent 

cycles. Then , 2( , ) 3 2m nrb K m n    . 

Now, we consider the Upper bound. 

 In order to the upper bond, here we only need to show that any (3m + n – 2)-edge 

coloring c of Km,n always contains a rainbow subgraph belonging to the family 2.  By 

contradiction, we assume that Km,n does not contain any rainbow subgraph in 2 . Take a rainbow 

spanning subgraph G of Km,n, which is of size (3m + n – 2). That is to say that G contains exactly 

one edge of each color. By the induction hypothesis, 2G . 

From Theorem 2.1, Lemma 2.4, we have that G can be obtained from a subdivision 0G of a graph 

listed in Figure 1 by adding a forest and at most one edge joining each tree of the forest to 0G . 

Since |E(G)| = 3m + n – 2, from by Lemma 2.4, G is not a subdivision of aG , bG , cG , dG , eG and 

.fG  Clearly, the number of edges of them is less than 3m + n – 2. Therefore, this is 

contradiction. 

This completes the proof.        

 

Conclusion 

In the current paper, we studied different problems in edge colorings. In particular, we 

studied rainbow numbers in bipartite graphs with multiple edges and minimum color numbers for 

rainbow graphs with independent cycles in complete bipartite graph. 
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