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Abstract 

The concept of two-wheel self-balancing robot is based on an Inverted pendulum (IP) on a cart. 

The control of an IP has been the most popular benchmark, among others, for teaching and 

researches in control theory and robotics. The implemented control technique is full state feedback 

control, Linear Quadratic Regulator (LQR). The LQR algorithm is essentially an automated way 

of finding an appropriate state-feedback controller. The full state system information about the 

position and velocity of the cart are obtained from encoder on dc motor and angular position and 

angular velocity of the pendulum are obtained from IMU sensor MPU6050. A complimentary 

filter was used to weigh the accelerometer and gyro signals together to determine the pitch angle. 

This two-wheel self-balancing robot was implemented by using the Arduino Mega 

microcontroller. The microcontroller can be programmed with the Mathworks® Simulink® 

program using the Rensselaer Arduino Support Package.  

Keywords: Linear Quadratic Regulator (LQR), complementary filter, microcontroller 

Introduction 

Control theory and its applications continue to grow and expand into new areas of our 

lives. From driverless cars to electric grid management to financial modeling we see new 

applications almost daily. These advances require that education grows and adapts as well. The 

content of control theory curriculum also has to include these new topics and applications to keep 

up with technology [Brian Howard, (2015)]. 

Two wheel self-balancing robot is a complicated non-linear system. It has also become 

great consideration as a research entity because of the unstable character of the system. The two 

wheel self-balancing robot is based on the fundamental principle of Inverted pendulum. Inverted 

pendulum has many practical applications such as human walking robots, missile launchers, 

earthquake resistant building design etc. Development of control system for a two-wheel self-

balancing robot has been a huge area of research for the past few years. This is mainly due to its 

nonlinear dynamics. It became an important test platform for the design and development of 

missiles, automobiles, space crafts, robots. The simplest method of control system is by using a 

PID controller [Keerthi Prakash, (2016)]. 

Simple PID controller cannot give the efficient solution to inverted pendulum single-mass 

system or inverted pendulum double-mass system, because these systems include nonlinearities, 

coupling, and uncertain dynamics [Yizhu Li, (2018)]. In this work, Linear Quadratic Regulator 

(LQR) was applied for two-wheel self-balancing robot. LQR is a well know method to determine 

the feedback gains of a dynamic system. It’s assumed that we have an optimal full-state 

feedback, i.e. that we can measure all of our states. 

There will be only one axle connecting the two wheels and a platform will be mounted on 

that to make two-wheel self-balancing robot which can balance itself. To obtain this physical 

structure, two wheels are mounted with two dc motors in this work. The platform will not remain 
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stable itself because the system is not stable. The control objective is to keep the two wheels 

robot in the upright position by using inertial measurement unit (IMU) sensors and optical 

encoder. At first we have decided to just balance the robot on its two wheels. 

Mathematical Modeling 

Mathematical model is required to design the control law. Therefore, Newton law based 

model of the IP has been derived. The IP consists of a moveable cart rail system and a swing-able 

pole connected to the cart. A free body diagram of an inverted pendulum mounted on a motor-

driven cart is shown figure (1). Cart position is controlled with DC motor. The non-linear 

mathematical model of the IP is derived using the Newton law approach. Vertical force does not 

affect the cart position and the horizontal movement is controlled by the forces applied through 

DC motors [Katsuhiko Ogata, (2010)]. The obtained non-linear mathematical model of system is 

given by equations (1) and (2). The system state and parameters are explained in table (1) and 

system specifications are provided in table (2). 

( Mc + m )      + ml    cos θ = ml    sin θ + u      (1) 

( I + ml
2
 )      +   ml cos θ      = mgl sin θ      (2) 

Since the inverted pendulum must be kept vertical position, it can be assumed that θ and 

    are small quantities such that sin      , cos   = 1 and    θ = 0. Then the non-linear system 

equations (1) and (2) can be linearized to equation (3) and (4) [Liu, Jinkan, (2017)]. 

 Table 1. The system states and parameters 

 
Figure 1 Free body diagram of 

inverted pendulum system 

Symbol Description 

Mc mass of cart 

m mass of pendulum 

l length of pendulum 

g gravity 

θ,   ,    angular position, angular velocity and 

angular acceleration of the pendulum 

rod from the vertical line 

x,   ,    cart position, velocity and acceleration 

respectively 

u control force applied to the cart 

I moment of inertia of the rod 
 

Table 2 Parameter measurement values for the system 

 

Symbol Meaning Value Unit 

Mc Cart mass 0.46 kg 

m Pendulum mass 0.14 kg 

L Cart length 0.23 m 

l Length of pendulum 0.17 m 

I Inertia  

  
 mL

2
 kg/m

2
 

g Gravity 9.8 m/s
2
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The system equations can be reduced as follow. 
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Let define as   = x,   =   , x3 =   and x4 =   . Therefore, 
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Converting equation (7) to the equivalent state space form given as, 
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x is the n dimensional state vector, u is the m dimensional input vector, A is the n   n system 

matrix and B is the n   m control matrix. 

By using parameter measurement values from table (2), the system equation becomes 
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 Stability 

One of the first things we want to do is analyze the stability of the open-loop system 

(without any control). The poles or eigenvalues of the system matrix, A, determine the stability of 

the system. For this system based on the state space equation (9), the poles can be found simply 

by using Matlab command (poles = eig(A)). The poles or eigenvalues of opened loop system 

matrix are 0, 0, 7.9192 and -7.9192. The system has four poles with one in the right half plane 

which makes the system unstable. Therefore, a linear controller needs to be designed to force the 

poles in the left half plane.  
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Control Algorithm 

Most single input, single output (SISO) systems can be adequately analyzed and 

controlled using basic transfer function techniques and PID type controllers. For systems that 

have multiple inputs and multiple outputs (MIMO) a more suitable type of control framework is 

called full state feedback. A full state feedback controller measures or estimates all of the system 

“states” and uses this “state” multiplied by a gain matrix to control the system. 

The inverted pendulum based two-wheel self-balancing robot is an unstable and 

nonlinear system. In order to make the pendulum in upright position where the system will be 

stable, the suitable control algorithm has to be implemented. 

Controllability and observability 

 The concept of controllability and observability were introduced by Kalman (1960) and 

play an important role in the control of multivariable systems. A system is said to be controllable 

if a control vector u(t) exists that will transfer the system from any initial state x(t0) to some final 

state x(t) in a finite time interval. A system is said to be observable if at time t0, the system state 

x(t0) can be exactly determined from observation of the output y(t) over a finite time interval 

[Roland S. Burns, (2001)]. 

If a system is described by the following equations 

   = Ax + Bu 

y = Cx + Du              (10) 

then a sufficient condition for complete state controllability is that the n n matrix 

M = [B: AB: …:A
n-1

B]            (11) 

contains n linearly independent row or column vectors, i.e. is of rank n (that is, the matrix is non-

singular, i.e. the determinant is non-zero). Equation (11) is called the controllability matrix. 

 The system described by equations (10) is completely observable if the n n matrix 

N = [C
T
: A

T
C

T
: … : (A

T
)

n-1
C

T
]          (12) 

is of rank n, i.e. is non-singular having a non-zero determinant. Equation (12) is called the 

observality matrix. The rank of controllability and observability matrix of a system model can be 

determined in Matlab using command rank(ctrb(A,B)) or rank(ctrb(sys)) and rank(obsv(A,C)) or 

rank(obsv(sys)) respectively. 

Linear Quadratic Regular (LQR) Control  

LQR is a linearized and optimal control technique which provides optimal gains for the 

systems. It is more suitable for the linear systems having no uncertainties or disturbances. The 

major benefit of this technique is that it gives the gains to minimize the cost function [Saqib 

Irfan, (2108)]. For an n
th

 order system the general cost function of LQR is given as, 

J =                 
 

 
             (13) 

where, Q          is positive definite or positive semi definite Hermitian matrix or real 

symmetric matrix, R        is a positive definite Hermitian matrix or real constant number and J 
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is always scalar quantity. The Q matrix is a weighting function for the states and R is weighting 

function for the inputs. LQR gain is computed as, 

K =                              (14) 

The Riccati equation is given in equation (15) to solve the optimal controller. 

   PA +                    = 0            (15) 

The control law for the linear system is given as, 

   u = -Kx                              (16) 

   = Ax – BKx 

   = (A – BK)x              (17) 

Using Matlab to solve the equations, this controller had the following pole locations and 

gains. The controller parameters R = 0.3 and the diagonal values of Q matrix = [1, 1, 10, 1] are 

chosen to achieve good stability performance of the system. The poles and LQR gain matrix for 

the closed loop system are [-22.3818 -3.6206 -1.7162 -1.7162] and  [-2.5820  -3.4896 -22.6641   

-3.4435] respectively. Since all poles are in the left half plane, the system will be stable at 

pendulum upright position. Assuming it is possible to directly measure the entire state (i.e. y = x) 

implementing a state space controller is really simple. The state is simply multiplied by a control 

gain matrix KLQR and the result is fed back into the plant. As a block diagram for full state 

feedback control system is shown in figure (2). 

 X_d = Ax + Bu

       y = Cx + Du
- KLQR

Controller Plant

u

x

y

 

Figure 2 The block diagram of full state feedback control system 

 

Results and Discussion 

Implementation results 

 Simulink support package for Arduino hardware and Rensselaer Arduino support package 

had been installed to implement this research as prerequisite. The dynamics of the plant was 

sampled at fixed fs = 200 Hz, which equals to the sampling frequency of the IMU sensors. 

Therefore, the microcontroller will execute the Simulink code every 50 milliseconds. The real 

time simulation involved in the proposed work was performed on Simulink, with simulation time 

of 30 s. But the following figures for the system response graphs are zoomed out to view clearly 

comparative study.  

The controller from figure (2) was implemented as a Simulink model, shown in figures 

(3) and (4). The based part of two-wheel robot position, system state x can be obtained from the 
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encoders on the motor and its velocity, system state x_dot is obtained from derivative block of    

x data. The Simulink diagram associated with robot position and velocity is shown in figure 3(a). 

Micro-Electro-Mechanical Systems (MEMS) package (MPU6050) is used to provide the rate of 

pitch angle   , and pitch angle  , as shown in figure 3(b). Measuring this pitch angle using the 

MPU6050 provided to be a challenging part of designing the controller. The accelerometers were 

relatively slow to respond and could not be used by themselves to measure pitch angle. The gyro 

signals have noise and a DC offset (bias) and could not be used alone to measure the angle.  

A complimentary filter was used to weigh the accelerometer and gyro signals together to 

determine the pitch angle. Figure 4(b) shows the complimentary filter design used in the two-

wheel robot. All four of the state variables are passed into a vector and multiplied by the LQR 

gain vector KLQR. The output of the gain is then passed onto the motor controller as shown in 

figure 4(a). The controller also includes logic to shut the motor off if the robot pitch angle is 

greater than 20° in either direction.  

 

 

Figure 3 Simulink diagram for obtaining system state variables [ x         ]  

 
 

Figure 4  Simulink diagram for LQR controller and Complimentary filter 

The desired dynamics system response can be set by adjusting the parameters Q and R 

values. The values of KLQR depend on both R and Q values. These LQR gain vector will affect 

the control input signal level, the system response and the robustness of the system.  

The control input signal conditioning can be set by adjusting R value. By choosing a large 

value of R, the system will be operated with less energy i.e. low power consumption. Therefore, 

it is called expensive control strategy. If the very large value of R is used, the system cannot be 

responded fast enough to prevent the robot from falling. On the other hand, the system will be 

responded faster with the choosing of low value R. It is usually called cheap control strategy. The 

control signal is also become large and chattering. By using very low value of R, the system will 

 

(a
) 

(b) 

(a
) 

(b) 
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become oscillate and unstable. Three different values of R, its corresponding KLQR gain values 

and the system response are compared in table (3). In this research, the optimum R value can be 

tuned manually with 0.3 for the constructed two-wheel robot which has the system parameter 

values given in table (2). Figure 5 (a), (b) and (c) are shown for the real time Simulink graphs of 

control signal, the pitch angles and the robot position values respectively.  

Similarly, the Q values can hardly influence on the system response because it is a 

weighting function for the system state. In this two-wheel robot, there are four system variables, 

the position and speed of the based part of robot and the pitch angle and angular rate of the 

balanced robot. The specific system state response, [ x         ] can be tuned manually with the 

corresponding diagonal values of Q matrix, Q(1,1), Q(2,2), Q(3,3) and Q(4,4) respectively. By 

using larger value of Q, the system will try to stabilize with the least possible changes in the 

states. Alternatively, using the smaller value of Q will imply less influence about the changes in 

the states. The choosing for the best values of Q and R is a challenging part in LQR algorithm.  

Table 3 The system response for different values of LQR gains 

R KLQR 
Control 

Input 

Chattering 

frequency 

System 

Response 

0.1 -3.1623 -4.9191 -27.8789 -4.9002 large high aggressive 

0.2 -2.2361 -3.5604 -22.7021 -3.7581    

0.3 -1.8257 -2.9641 -20.5141 -3.2717 optimum 

0.4 -1.5811 -2.6109 -19.2573 -2.9913  

0.5 -1.4142 -2.3708 -18.4254 -2.8054 small low delay 

 

The real time pitch angle responses and the control signal u for different three diagonal 

values of Q matrix are compared as shown in figure (6). The small and large Q values are tuned 

manually to achieve the desired system performance. While the low values of Q (Q = [1, 1, 10, 

1]) are used, the control signal is small and the system cannot robust. To obtain the robustness 

character, the larger Q values (Q = [6, 1, 150 3]) are tuned to compute the controller gain matrix 

but the system becomes jitter. The figure 6(a) and 6(b) are shown for the control signal and pitch 

angle response respectively. Since the high frequency switching is occurred at control signal, the 

robot will be jittered while balancing. This jitter effect may produce noise signal to the 

microcontroller. The experimental setup for real time simulation with Matlab Simulink and two-

wheel balancing robot photos are shown in figure 7(a) and 7(b) respectively. 

 

(a) 
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Figure 5 The control signal and system response compare results for three different R values 

 

 

(c) 

(a) 

(b) 

(b) 

Figure 6 The control signal and system response compare results for three different Q values 
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Figure 7  Two-wheel self-balancing balancing robot 

 

Conclusion 

 In this research, two-wheel self-balancing robot was implemented by using state space 

control, LQR algorithm. The Rensselaer Arduino Support Package and Simulink support package 

for Arduino hardware were used not only to program for Arduino mega but also to analyze the 

performance of controller with real time simulation. Experimental results show that self-

balancing can be achieved with LQR control in the vicinity of the upright position. The 

parameters Q and R values can be used as design parameters to penalize the state variables and 

the control signals. Since Q and R values are very sensitive variables, they are tuned carefully to 

provide desired system response. From this research, the MEMS gyro behavior suggests that 

Kalman filtering would be helpful in attenuating the noise from the gyro data. It is obviously that 

both sensor selection and signal conditioning are important to the performance of the control 

systems. 
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