
J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

*.
Dr, Associate Professor and Head, Department of Computer Studies, National Management

Degree College

FINDING OPTIMAL TRAVELLING SALESMAN TOURS

THROUGH MYANMAR CAPITAL CITIES

 Kyaw Moe Min
*

Abstract

The travelling salesman problem (TSP) is a combinational optimization

problem in which the goal is to find the shortest path between different

cities that the salesman takes. The travelling salesman problem involves

finding the trip of minimum cost and the processing time that a salesman

can make to visit the cities in a sales territory once and only once

(represented by a complete graph with weights on the edges), starting and

ending the trip in the same city. This paper adopts the nearest neighbour and

two sided nearest neighbour algorithm to solve the well-known travelling

salesman problem. The algorithms were implemented using (C++) and MS

VC++programming language. The approach can be tested on two graphs

that making a TSP tour instance of 5-city, 14-city and more. The

computation results validate the performance of the proposed algorithm.

Keywords- travelling salesman problem (TSP), nearest neighbour, two sided

nearest neighbour

Introduction

 The travelling salesman problem (TSP) consists of a salesman and a

set of Myanmar capital cities. The salesman has to visit each one of the capital

cities starting from a certain one and returning to the same city. The challenge

of the problem is that the travelling salesman wants to minimize the total

length of the trip. A salesman must make a tour of a number of Myanmar

cities using the shortest path available and visit each city exactly once and

only once and return to the original starting point.

The travelling salesman problem can be described as follows:

 TSP = {(G, f, t): G = (V, E) a complete graph, f is a function V×V --> Z, t ∈ Z,

G is a graph that contains a travelling salesman tour with cost that does not

exceed t}.

40 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

Example:

Consider the following set of cities:

Figure 1: A graph with weights on its edges.

The problem lies in finding a minimal path passing from all vertices

once. In the figure 1, the path Path1 {A, B, C, D, E, A} and the path Path2

{A, B, C, E, D, A} pass all the vertices but Path1 has a total length of 240 and

Path2 has a total length of 310.

Statement of the Problem

The travelling salesman problem involves a salesman who must make

a tour of a number of cities using the shortest path available and visit each city

exactly once and only once and return to the original starting point. For each

number of cities n, the number of paths which must be explored is n!, causing

this problem to grow exponentially rather than as a polynomial. There are

bunch of algorithms offering comparably fast running time and still yielding

near optimal solutions.

Solution Methods

The following algorithms can be used to find the shortest path.

(i) Nearest Neighbour Algorithm

A

B

C

D

E
50

100
12020

80

30

30

40

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 41

(ii) Two-sided Nearest Neighbour Algorithm

(iii)Nearest Insert Algorithm

(iv) Farthest Insert Algorithm

(v) Cheapest Insert Algorithm

(vi) Spanning Tree Algorithm

(vii)Chris to fides Algorithm

There will be coded Algorithms (i)Nearest Neighbour and (ii) Two-

sided Nearest Neighbourin C
++

 language and apply them to find optimal or

near optimal tours passing through sure specified cities of Myanmar.

Nearest Neighbour Algorithm

Input: V= {1, 2, 3,.... , n }, the set of labels of n cities

distancecij, between city i and city j.

Output: a TS tour T of optimal or near optimal length

Step 1. (Initialization)

 Set visit [j]: = false for all j  V.

 Choose any vertex i V.

 Set s: = i (s is the starting city)

 T [1]: = s (T is the tour or sequence of cities)

 visit [s] = true

 tl:= 0 (tl is the length of the tour)

 p: = s (p is the present city)

 count: = 1.

Step 2. Choose a vertex k such that

 cpk = min {cpj visit[j] = false }

 Set count: = count + 1

 T[count]: = k

 visit [k]: = true

tl : = tl +cpk

42 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

 p: =k

Go to Step 2.

Step 3. Set T[n+1] = s.

 Output T and tl. Stop.

 The code will be described the above algorithm in C
++

as follows.

Firstly, the distance matrix type will be coded as follow.

int d[50][50]={ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},

 {0,0,153,510,706,966,581,455,70,160,372,157,567,342,398},

 {0,153,0,422,664,997,589,507,197,311,479,310,581,417,376},

 {0,510,422,0,289,744,390,437,491,645,880,618,374,455,211},

{0,706,664,289,0,491,265,4101,664,804,1070,768,259,499,310},

{0,966,997,744,491,0,400,514,902,990,1261,947,418,635,636},

 {0,581,598,390,265,400,0,168,522,634,910,593,18,284,239},

 {0,455,507,437,410,514,168,0,389,482,757,439,163,124,232},

 {0,70,197,491,664,902,522,389,0,154,406,133,508,273,355},

 {0,160,311,645,804,990,634,482,154,0,276,43,623,358,498},

{0,372,479,880,1070,1261,910,757,406,276,0,318,898,633,761},

 {0,157,310,618,768,947,593,439,133,43,318,0,582,315,464},

 {0,567,581,374,259,418,18,163,508,623,898,582,0,275,221},

 {0,342,417,455,499,635,284,124,273,358,633,315,275,0,247},

 {0,398,376,211,310,636,239,232,355,498,761,464,221,247,0} };

Secondly, the part of nearest neighbour algorithm used will be coded as

follow.

 while(count !=n)

 {min =999999;

 for(i=1;i<=n;i++)

 {if(visit[i]==0){ if(d[pc][i]<min)

 { min=d[pc][i];

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 43

 nc=i;

 }}}

 count=count+1;

 T[count]=nc;

 visit[nc]=1;

 tl=tl+min;

 pc=nc;

 cout<<min<<" + "; }

 T[n+1]=fc;

 tl=tl+d[pc][fc];

 cout<<d[pc][fc]<<" = " <<tl;

 cout<<"\n\n A near optimal tour is "<<" ";

 cout<<"{ ";

 for(i=1;i<=n;i++)

 cout<<(T[i])<<", ";

 cout<<fc<<" }";

 cout<<"\n\nThe total length of the tour is"<<"

"<<tl<<".";}

Finding a Near Optimal Tour through 14 Cities in Myanmar by Using

the Nearest Neighbour Algorithm

 By using the above nearest neighbour algorithm we find out a near

optimal tour passing through 14 cities in Myanmar: Yangon, Pathein, Sittwe,

Hakha, Myitkyina, Mandalay, Taunggyi, Bago, MawlaMyine, Dawei, Hpa-an,

Sagaing, Loikaw, Magwe. The distances, in kilometer, between these cities

can be given by the following distance matrix in figure 2.

44 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

Y
a

n
g
o

n

P
a

th
ei

n

S
it

tw
e

H
a

kh
a

M
yi

n
tK

yi
n

a

M
a
n

d
a
la

y

T
a

u
n
g

g
yi

B
a
g

o

M
a
w

la
M

yi
n

e

D
a

w
ei

H
p

a
-a

n

S
a
g
a

in
g

L
o

ik
a
w

M
a
g

w
e

Yangon 0 153 510 706 966 581 455 70 160 372 157 567 342 398

Pathein 153 0 422 664 997 589 507 197 311 479 310 581 417 376

Sittwe 510 422 0 289 744 390 437 491 645 880 618 374 455 211

Hakha 706 664 289 0 491 265 4101 664 804 1070 768 259 499 310

MyintKyin

a

966 997 744 491 0 400 514 902 990 1261 947 418 635 636

Mandalay 581 598 390 265 400 0 168 522 634 910 593 18 284 239

Taunggyi 455 507 437 410 514 168 0 389 482 757 439 163 124 232

Bago 70 197 491 664 902 522 389 0 154 406 133 508 273 355

MawlaMyi

ne

160 311 645 804 990 634 482 154 0 276 43 623 358 498

Dawei 372 479 880 1070 1261 910 757 406 276 0 318 898 633 761

Hpa-an 157 310 618 768 947 593 439 133 43 318 0 582 315 464

Sagaing 567 581 374 259 418 18 163 508 623 898 582 0 275 221

Loikaw 342 417 455 499 635 284 124 273 358 633 315 275 0 247

Magwe 398 376 211 310 636 239 232 355 498 761 464 221 247 0

Figure2: The distance relationship among the capital cities

If the city 1is chosen as the first city, then the algorithm produces the

following output:

The first city ---> 1

A near optimal tour is { 1, 8, 11, 9, 10, 2, 14, 3, 4, 12, 6, 7, 13, 5, 1 }

The sum of distances = 70 + 133 + 43 + 276 + 479 + 376 + 211+ 289 +259 +18

 + 168 + 124 + 635 + 966 = 4047

The total length of the tour is 4047.

 If the city 2 is chosen as the first city, then the algorithm produces the

following output:

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 45

 The first city ---> 2

A near optimal tour is { 2, 1, 8, 11, 9, 10, 13, 7, 12, 6, 14, 3, 4, 5, 2 }

The sum of distances = 153 + 70 +133 +43 + 276+ 633 + 124 +163 +18+ 239

 + 211 + 289 + 491 + 997 = 3840

The total length of the tour is 3840.

Table 1: Total distance and Time depending on the Starting City

City-Name Starting City Total Distance(km) Time (ms)

Yangon 1 4047 3

Pathein 2 3840 2

Sittwe 3 4172 2

Hakha 4 3876 4

MyintKyina 5 4052 2

Mandalay 6 4207 1

Taunggyi 7 4059 2

Bago 8 3922 2

MawlaMyine 9 4728 2

Dawei 10 4016 2

Hpa-an 11 4706 3

Sagaing 12 4200 2

Loikaw 13 3922 5

Magwe 14 4092 2

 By choosing the best of the above 14 tours in table 1, we obtain the

following near optimal tour.

The tour = { 2, 1, 8, 11, 9, 10, 13, 7, 12, 6, 14, 3, 4, 5, 2 }

The total length of the tour = 3840 km

The total lengths on the starting city can be represented as a graph in the

figure 3.

46 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

Figure 3: Total lengths of the tour on the starting cityby nearest neighbor

algorithm

Two Sided Nearest Neighbour Algorithm

Input: V= {1, 2, ... , n }, the set of lables of n cities

 distance scij, between city i and city j

Output: a TS tour T

 Step 1: (Initialization)

 Set visit[j]:= false for all j  V.

 Choose any vertex i V.

 Set s: = i (s is the starting city)

 T[1] = s (T is the tour or the sequence of cities)

 visit[s]: = true

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Ya

n
go

n

P
at

h
ei

n

Si
tt

w
e

H
ak

h
a

M
yi

n
tK

yi
n

a

M
an

d
al

ay

Ta
u

n
gg

yi

B
ag

o

M
aw

la
M

yi
n

e

D
aw

ei

H
p

a-
an

Sa
ga

in
g

Lo
ik

aw

M
ag

w
e

D
is

ta
n

ce
 (

km
)

Total Distances of Each City by Nearest Neighbour

Algorithm

Total
Distance (km)

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 47

 tl: = 0 (tl is the length of the tour)

 pl: = s (pl is the present left city)

 pr: = s (pr is the present right city)

 count:= 1

Step 2. If count = n, set T[n+1]: = T[1] (count is the number of

already visited cities)

 Output T and tl.

Step 3. Choose a vertex k such that

 kp r
c = min{ jpr

c visit[j] = false }

 Choose a vertex m such that

 mp l
c = min{ jpl

c visit [j] = false }

 If kp r
c  mp l

c , then set

 count: = count + 1

 T[count] = k

 visit[k] = true

 tl = tl + kp r
c

 pr : = k

 Otherwise

 for j = count to 1

 Set T[j+1]: = T[j]

 T[1]: = m

 count: = count+1

 visit[m]: = true

 tl:= tl + mp l
c

 pl: = m

 Go to Step 2.

We can code the above algorithm in C
++

as follows.

 visit[sc]=1;

48 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

 T[1]=sc;

 inttl=0;

 intplc = sc;

 intprc = sc;

 int count=1;

 int min1,min2,nrc,nlc;

 while(count !=n)

 {min1 =999999;

 for(i=1;i<=n;i++) {

 if(visit[i]==0) { if(d[prc][i]<min1)

 { min1=d[prc][i];

 nrc=i;}}}

 min2=999999;

 for(i=1;i<=n;i++) {

 if(visit[i]==0) { if(d[plc][i]<min2)

 {min2=d[plc][i];

 nlc=i; }}}

 if(min1<=min2) { count=count+1;

 T[count]=nrc;

 visit[nrc]=1;

 tl=tl+min1;

 prc=nrc;}else{ for(i=count;i>=1;i--)

 T[i+1]=T[i];

 T[1]=nlc;

 count=count+1;

 visit [nlc]=1;

 tl=tl+min2;

 plc=nlc;}

 }

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 49

 T[n+1]=plc;

 tl=tl+d[prc][plc];

 cout<<"\n\n A near optimal tour is "<<" ";

 cout<<"{ ";

 for(i=1;i<=n;i++)

 cout<<(T[i])<<", ";

 cout<<plc<<" }";

 cout<<"\n\nThe total length of the tour is"<<"

"<<tl<<".";}

Finding a Near Optimal Tour through 14 Cities in Myanmar by Using

the Two-sided Nearest Neighbour Algorithm

 By using the above nearest neighbour algorithm we find out a near

optimal tour passing through 14 cities in Myanmar: Yangon, Pathein, Sittwe,

Hakha, Myitkyina, Mandalay, Taunggyi, Bago, MawlaMyine, Dawei, Hpa-an,

Sagaing, Loikaw, Magwe. The distances, in kilometer, between these cities

can be given by the Figure (2) distance matrix.

If we choose the city 5 as the first city, the city 10 as the second city,

and so on, then the algorithm produces the following outputs:

The starting city ---> 5

 A near optimal tour is { 5, 6, 12, 7, 13, 14, 3, 4, 2, 1, 8, 11, 9, 10, 5 }

The total length of the tour is 4052.

The starting city ---> 10

A near optimal tour is { 10, 9, 11, 8, 1, 2, 14, 3, 4, 12, 6, 7, 13, 5, 10 }

The total length of the tour is 4016.

50 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

Table 2: Total distance and Time depending on the Starting City

City-Name Starting City Total Distance (km) Time (ms)

Yangon 1 4016 2

Pathein 2 4016 3

Sittwe 3 3906 3

Hakha 4 3876 3

MyintKyina 5 4052 2

Mandalay 6 3921 2

Taunggyi 7 3921 2

Bago 8 4016 1

MawlaMyine 9 4016 2

Dawei 10 4016 4

Hpa-an 11 4016 2

Sagaing 12 3921 2

Loikaw 13 3921 3

Magwe 14 3908 2

By choosing the best of the above 14 tours in table 2, we obtain the

following near optimal tour. The tour = { 4, 5, 12, 6, 7, 13, 14, 3, 2, 1, 8, 11,

9, 10, 4 }

The total length of the tour = 3876 km

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 51

The total lengths on the starting city can be represented as a graph in the

figure 4.

Figure 4: Total length of the tour on the starting city by two-sided nearest

neighbor algorithm

Conclusion

 We have coded the nearest neighbour algorithm and the two-sided

nearest neighbour algorithm in C++ language used them to find near optimal

tours through the 14 cities in Myanmar.

3750

3800

3850

3900

3950

4000

4050

4100
Ya

n
go

n

P
at

h
ei

n

Si
tt

w
e

H
ak

h
a

M
yi

n
tK

yi
n

a

M
an

d
al

ay

Ta
u

n
gg

yi

B
ag

o

M
aw

la
M

yi
n

e

D
aw

ei

H
p

a-
an

Sa
ga

in
g

Lo
ik

aw

M
ag

w
e

D
is

ta
n

ce
 (

km
)

Total Distances of Each City by Two-sided Nearest

Neighbour Algorithm

Total Distance
(km)

52 J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3

Table 3: Total distance and Processing Time depending on Starting City

by the two Algorithms

City-Name
Starting

City

nearest neighbour

algorithm

two-sided nearest

neighbour

Total

Distance(km)

Time

(ms)

Total

Distance(km)

Time

(ms)

Yangon 1 4047 3 4016 2

Pathein 2 3840 2 4016 3

Sittwe 3 4172 2 3906 3

Hakha 4 3876 4 3876 3

MyintKyina 5 4052 2 4052 2

Mandalay 6 4207 1 3921 2

Taunggyi 7 4059 2 3921 2

Bago 8 3922 2 4016 1

MawlaMyine 9 4728 2 4016 2

Dawei 10 4016 2 4016 4

Hpa-an 11 4706 3 4016 2

Sagaing 12 4200 2 3921 2

Loikaw 13 3922 5 3921 3

Magwe 14 4092 2 3908 2

We can choose the optimal tour path in order to table 3. By using the

nearest neighbour algorithm, the total tour distance is less than that distance of

the two-sided nearest neighbor used. The total lengths of the tour on the

starting city by two algorithms can be represented as a graph in the figure 5.

J. Myanmar Acad. Arts Sci. 2019 Vol. XVII. No.3 53

Figure 5: Total lengths of the tour on the starting city by two algorithms

We observe the processing time in both the nearest neighbour and the

two sided nearest neighbour programs. The processing time is less. Moreover,

these two algorithms can be applied to solve the travelling salesman problems

containing more and more cities in Myanmar.

References

Amanur (2012):"The Travelling Salesman Problem, Amanur Rahman Saiyed, Indiana State

University, Terre Haute, IN 47809 , USA, asaiyed@sycamores.indstate.edu,

April 11, 2012

Lawler, L.(1976): “Combinatorial Optimization: Networks and Matroids”, Holt, Rinehart&

Winston, New York,1976

Lawler, J.K.(1985): ”The Travelling Salesman Problem. A Guided Tour of Combinatorial

Optimization”, A.H.G Rinnooy Kan & D.B. Shmoys and Lawler, J.K. Lenstra,

Wiley, New York, 1985.

Richard L.(2018):"Fundamentals of Programming C++", Richard L. Halterman, School of

Computing, Southern Adventist University, Pages-746, February 28, 2018.

Tim Bailey(2005):"An Introduction to the C Programming Language and Software Design",

Tim Bailey, Pages-153, July 12, 2005.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3750

3800

3850

3900

3950

4000

4050

4100

Ya
n

go
n

P
at

h
ei

n
Si

tt
w

e
H

ak
h

a
M

yi
n

tK
yi

n
a

M
an

d
al

ay
Ta

u
n

gg
yi

B
ag

o
M

aw
la

M
yi

n
e

D
aw

ei
H

p
a-

an
Sa

ga
in

g
Lo

ik
aw

M
ag

w
e

D
is

ta
n

ce
 (

km
)

Total Distances of Each City by Two Algorithms

two-sided
nearest

neighbou
r
algorithm

