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DYNAMICS AND SIMULATION OF THE GRAVITATIONAL COLLAPSE 

OF A NEUTRON STAR TO A BLACK HOLE 

Thei` Theint Theint Aung
1
, Kyaw Zall Linn

2
                                        

Abstract 

Using the highly non-linear differential equations, 3 +1 numerical relativity and Tolman-

Oppenheimer-Volkoff equations, together with so called 1-log slicing condition (singularity 

avoiding gauge) it has been found that no real and coordinate singularity appears when the 

numerical simulations are carried out. Mass-Radius and Mass-Density visualization are 

implemented. 
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Introduction 

Neutron stars are stellar remnants resulting from the gravitational collapse of a massive 

star during supernova event.  Neutron stars are the most compact and smallest stars known to 

exist in the universe. Neutron stars are the end points of stellar evolution of massive stars whose 

corpse is not large enough to become a black hole. Black holes are even more compact than 

neutron stars: here, several solar masses are compressed within only a few kilometers "radius". 

They do not possess a distinct surface as such, but are delimited by a so-called event horizon 

which is the limit beyond which light cannot escape to infinity. General relativity is taken part in 

an important role in the formation of black holes and very important for the neutron stars. So the 

numerical simulations of gravitational collapse of rotating stellar configurations leading to the 

formation of black hole are a long standing problem in numerical relativity. This paper tries to 

simulate the collapse of a neutron star to a black hole. In the following the main theoretical 

concepts and basic equations required to understand the background of the gravitational 

collapsing of neutron star to black hole are discussed. 

The Einstein Equations 

The main theoretical concepts and the basic equations needed to understand the 

background of the gravitational collapse of neutron star to black hole are summarized. In 

connecting with the conservation laws for energy-momentum and rest-mass, Einstein’s theory of 

general relativity is needed to solve the groundings of the differential equations. In highly 

nonlinear differential equation, the Einstein equations and the conservation laws are defined as 

follow 
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Where Tμν is the energy-momentum tensor, Rμν is the Ricci tensor, which contains first and 

second derivatives of the space-time metric gμν,    is the covariant derivative and u
μ
 is the four 

velocity of the stars fluid. The Einstein equation describes in which way the space-time structure 

need to bend if energy-momentum is present. In this paper the energy-momentum, which curves 

space-time, arises from the large energy amount of the neutron star matter. 

Tolman-Oppenheimer-Volkoff equations 

The gravitational collapse of a neutron star to a black hole is depended on the equation of 

state (EOS), i.e. the relation between pressure and density in the neutron star interior (Lattimer & 

Pethick, 2004& Aaron Smith, 2012).To consider the mechanical structure of the neutron star is 

taken to be perfect fluid and spherical. For a perfect fluid, the energy momentum tensor is: 

 T p u u pg                                                             (4) 

The law of conservation of energy and momentum leads to 

   ;
;
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For the spherically symmetric object, the space time is given by the Schwarzschild metric 

                       
2 2 ( ) 2 2 ( ) 2 2 2 2 2 2sinN r rds e dt e dr r d r d                                  (6) 

where N(r) and β(r) are the metric functions depended on the radial coordinate r, t is the time 

component and r, θ and ϕ are the spatial component, 
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and the N(r) can be expected from the following equation; 

                                              

34 ( )

( 2 ( ))

dN Gpr Gm r

dr r r Gm r

 


                                             (8) 

 

By taking the boundary condition, 2 ( ) 2 ( ) 1N r r

r r
Lime Lime 

 
   

So,                                                 2 ( ) 2 ( )
(1 )N r Gm r

e
r

 
    

(9) 

  If r = Rs = 2MG the Schwarzschild radius, m ≡ m(r) is star radius,   2
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is mass of the sphere with radius r. Then the structures of spherical symmetric stars are computed 

utilizing the Tolman-Oppenheimer-Volkoff relativistic structure equations (i.e. TOV equations): 
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Where P and ρ are the pressure and mass-energy density, and m(r) is the gravitational mass 

enclosed within a radius r. This connection is made by the equation of state of matter P=P (ρ) 

(the set of all spherical symmetric), in particular, an estimate for the maximum mass of the star 

can be obtained. These sets of nonlinear equations are for p(r) and m(r) from 0r  for starting 

value of 
0( 0)p r p  to the point r R where the pressure ( ) 0p r R  . At that point R is the 

radius of the star. Since ( ) 0p r R  , it is the vacuum outside of the star because the pressure 

gradually decreases outwards from the center. So there require that exterior metric should be 

Schwarzschild metric. Then the metric functions must be continuous at r R : 
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and outside the star
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The total mass of the star is defined       ( )M m r                                                                      (14) 

Thus total mass of the star is determined by distant orbits, 2
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Outside the distribution of mass, which terminates at the radius of star R, there is in 

vacuum with ( ) 0p r R  and Einstein equations give  
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The important information which can be obtained by solving the TOV equation is the 

mass-radius relationship for a neutron star given a particular EOS model. If 
sr R , where r is the 

radius of star, and 2sR MG , i.e., the Schwarzschild radius, with the mass of the star M and the 

gravitational constant G. For sr R , the star becomes unstable and connected with gravitational 

collapse and likely to form a black hole. The 3-D variation of the gradient of the gravitational 

potential can be visualized in terms of radial function r and mass m. 

The gravitational collapse of neutron star to black holes 

To simulate the evolution of a collapse of a neutron star, the Einstein’s equations are 

needed to reformulated and solve the time dependent problem numerically. This reformulation, 

the so called (3+1) split, starts by slicing the 4-dimensional manifold M into 3-dimensional space 

like hypersurface Σt.  The space-time metric gab is then also divided into a purely spatial metric γij 

and a lapse function N and a shift vector. Homogeneously, the line element may be written as  

  2 2 2a b i i j j

ab ijds g dx dx N dt dx dt dx dt       
                   

         (17)
                      

 

where ij and
ij is raise the lower indices of spatial tensors, N is the lapse function and β

i
 the shift 

vector and which is often referred to as the metric in 3+1 form(Baumgarte, 1998), here                    

ds
2
=-(proper time between neighboring spatial hypersurfaces)

2
 +(proper distance between the 

spatial hypersurface)
2
.  
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Figure 1  3+1 decomposition of spacetime 

 

The coordinate label x
i
 moves through spacetime from one slice to another in a way given 

by the lapse N and shift i .Thus this equation can determine the invariant interval between 

neighboring points. The covariant components of metric abg  are 
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The lapse function N describes the difference between the coordinate time t and the proper time 

of a fluid particle. The shift vector βi measures how the coordinates are shifted on the spatial slice 

if the fluid particle moves an infinitesimal time step further in figure. By using the above matric, 

the first order differential equation called ADM equations are reformulated. The ADM equations 

have two set of equations called constraint equations and evolution equations: the constraint 

equations are 

2 16ij

ijR K K K     (Hamiltonian constraint)                                      
   

(19) 

and                      8ji i

j iD K D K j   (momentum constraint)            
                                

(20) 

the evolution equations are    
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The shift terms in the last two equations arise from the Lie derivatives abL  and abKL . 

Here L is the lie derivative along the shift vector and that Ricci tensor Rij is given be second 

spatial derivatives of the metric (Aaron Smith, 2012, Arnowitt et al., 1962, Arnowitt et al., 2008). 
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As a result this is not first order system. The constraint equations constraint the field variables on 

each spatial slice and the lapse and the evolution equations determine the time evolution of the 

fields from one spatial slice to the next. 

Singularity avoidance conditions and 1- log slicing 

In particularly, most of the modern 3+1 solution of the Einstein’s equations adopt as 

hyperbole slicing condition a member of the so called Bona-Masso` family of slicing 

conditions(Bona C. et al, 2005), which can be generically written as 

   2

t N KN f N   L                                                           (23) 

where f is an arbitrary function and f(N)>0. By varying the expression of the generic function 

f(N), the slicing condition recovers a number of well-known slicing. The geodesic slicing 

condition also fulfills this relation with f = 0. If by setting f =q/N with q is an integer, the slicing 

condition obtains the generalized “1- log” slicing condition where   1/ 2lniN h x   , h(xi) is 

positive but otherwise arbitrary time independent function. In practice, most numerical 

simulations set f=2/N lead to 

  2t N KN   L                                                                    (24) 

Substituting Eqn. (21) for –KN, 

  ln 2 i

t t iN D      L                                                        (25) 

If normal coordinates are used, β=0, the above equation becomes 

lnt tN                                                                        (26) 

a solution of which is                     1 lnN                                                                    (27) 

For this reason, a foliation whose lapse function obeys is called a 1-log slicing. Which has 

been shown to be very robust and well behaved not only in vacuum spacetimes representing 

black holes but also in spacetimes describing the neutron stars.  

A coordinate system can be constructed by identifying the time coordinate vector with the 

Killing vector ξ
a
, so              

a a a a

K Kt N n      (28) 

KN is called Killing lapsed and a

K  is called Killing shift. For Schwarzschild spacetime, the 

foliated by slices of constant Schwarzschild time t, the Killing lapse can be identified 
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and the Killing shift as 0r

K  . But NK is negative for r >M/2. Having the slicing lapse equal to the 

Killing lapse, 0t K t SN N    the slicing shift is equal to the Killing shift, then condition (24) 

reduces to                                 
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This condition is stationary 1-log slicing. This condition can be employed for the construction of 

initial data. Besides this condition considered without the adventive term,  

NKNt 2                                                                        (31)
 
                                                             

 

 In this case the Killing lapse associated with a stationary slicing satisfied this condition only if 

the slices are maximal, i.e., if K=0. For Schwarzschild, the maximal slicing can be parameterized 

by a parameter C, the lapse is yield 
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where R is an areal radius. For C=0, it give the slice of constant Schwarzschild time t. When 

applying the 1-log slicing, the right hand side -2NK is replaced by –n f (N) K, where n is some 

arbitrary number and f (N) some non-zero and finite function of N. Besides, 1+log slicing 

condition can be applied to binaries.  

 

Figure 2 Mass-Radius relation of neutron star 

 

 

 

Figure 3 3D visualization of the gravitational potential with radius r and mass m 
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Figure 4 Graph of the lapse N for Schwarzschild in 1-log slicing 

 

Figure 5 3D visualization of the lapse N in the 1-log slicing 

 

Concluding Remarks 

When the central density of a neutron star exceeds the maximal allowed value   , the star 

collapses to a black hole and its radius shrinks until it reaches the value of the location of the 

event horizon of the corresponding black hole at r = 2M. . If sr R , where r is the radius of 

star, for sr R , the star becomes unstable and connected with gravitational collapse and 

likely to form a black hole and at 0  and R=2sR M  (i.e., the Schwarzschild radius, with 

the mass of the star M), singularity point are formed. So, Figure 2 shows the relationship 

between mass and radius of the neutron star. Figure 3 show 3D visualization of the gravitational 
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potential with radius r and mass m. To slow down the evolution near the real singularity, a 

singularly avoiding coordinates so called “1-log” slicing has been used fairly commonly. No real 

or coordinate singularity could appear in this gauge during the numerical evolution. Then, Figure 

4 shows the graph of the lapse N for Schwarzschild in the 1-log slicing. When applying the 1-log 

slicing, Figure 5 shows 3D visualization of the lapse N in the 1-log slicing, which would avoid 

the singularity point where the gravitational fields are strongest. 
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