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GRAVITATIONAL COLLAPSE AND BLACK HOLES ON THE BRANE 
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Abstract 

Gravitational collapse is assumed to be one of the main problems in general relativity and 
astrophysics. Using simple the Taylor expansion into the bulk and black string concept one can 
acquire acceptable “tidal charge” black hole and continue to explore “total tidal charge”, physical 
mass and energy for the modified Friedmann model. Some numerical works of the interesting 
equations are implemented. 
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Introduction 

The physics of brane-world compact objects and gravitational collapse is complicated by 
a number of factors, especially the confinement of matter to the brane, while the gravitational 
field can access the extra dimension, and the nonlocal (from the brane viewpoint) gravitational 
interaction between the brane and the bulk. Extra-dimensional effects mean that the 4D matching 
conditions on the brane, i.e., continuity of the induced metric and extrinsic curvature across the 
2-surface boundary, are much more complicated to implement. High-energy corrections increase 
the effective density and pressure of stellar and collapsing matter. In particular this means that 
the effective pressure does not in general vanish at the boundary 2-surface, changing the nature 
of the 4D matching conditions on the brane. The nonlocal KK (Kaluza and Klein) effects further 
complicate the matching problem on the brane, since they in general contribute to the effective 
radial pressure at the boundary 2-surface. Gravitational collapse inevitably produces energies 
high enough, i.e., 𝜌 ≫ 𝜆, to make these corrections significant. We expect that extra-dimensional 
effects will be negligible outside the high-energy, shortrange regime. 
 The contribution of the massive KK modes sums to a correction of the 4D potential. For   
𝑟 ≪ ℓ, one obtains 

V (r) ≈  
ୋ୑ℓ

୰మ
,       (1) 
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Figure 1 The Potential profile in terms of  𝑙 𝑎𝑛𝑑 𝑟 ( 𝑟 ≪  ℓ) 
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which simply reflects the fact that the potential becomes truly 5D on small scales. 

 For     𝑟 ≫ ℓ, 

V (r) ≈  
ୋ୑

௥
 ቀ1 +

ଶℓమ

ଷ୰మ
ቁ,     (2) 

 

 

 

 

 

 

 

 

 

 

 

which gives the small correction to 4D gravity at low energies from extra-dimensional effects. 
These effects serve to slightly strengthen the gravitational field, as expected. 

 A vacuum on the brane, outside a star or black hole, satisfies the brane field equations 

𝑅ఓఔ  =  −ℰఓఔ ,         𝑅ஜ
ஜ

= 0 = ℰஜ
ஜ

 ,           ∇஝ ℰஜ஝ = 0.   (3) 

The Weyl term ℰ𝜇𝜈 will carry an imprint of high-energy effects that source KK modes. 
This means that high-energy stars and the process of gravitational collapse will in general lead to 
deviations from the 4D general relativity problem. The weak-field limit for a static spherical 
source, Equation (2), shows that ℰ𝜇𝜈 must be on zero, since this is the term responsible for the 
corrections to the Newtonian potential. 
  

The black string 

The projected Weyl term vanishes in the simplest candidate for a black hole solution.  
This is obtained by assuming the exact Schwarzschild form for the induced brane metric and 
“stacking” it into the extra dimension, 

𝑑𝑠ଶ(ହ)
 =  𝑒ିଶ|௬|/ℓ𝑔෤ఓఔ𝑑𝑥ఓ𝑑𝑥ఔ  +  𝑑𝑦ଶ ,        (4) 

𝑔෤ఓఔ  =  𝑒ଶ|௬|/ℓ𝑔ఓఔ  =  −(1 −  2𝐺𝑀/𝑟)𝑑𝑡ଶ  +  
ௗ௥మ

ଵ ି ଶீெ/௥
+ 𝑟ଶ𝑑𝛺ଶ.       (5) 

 Each {𝑦 = const.} surface is a 4D Schwarzschild spacetime, and there is a line singularity 
along 𝑟 = 0 for all 𝑦. This solution is known as the Schwarzschild black string, which is clearly 
not localized on the brane 𝑦 = 0. Although  (5)𝐶𝐴𝐵𝐶𝐷 ≠ 0,  the projection of the bulk Weyl tensor 
along the brane is zero, since there is no correction to the 4D gravitational potential: 

Figure 2  The Potential profile in terms of  𝑙 𝑎𝑛𝑑 𝑟 ( r ≫  ℓ) 
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𝑉 (𝑟) =
ீெ

௥
   ⇒  ℰఓఔ  =  0.       (6) 

The violation of the perturbative corrections to the potential signals some kind of non-AdS5 
pathology in the bulk. Indeed, the 5D curvature is unbounded at the Cauchy horizon, as 𝑦 → ∞: 

𝑅஺஻஼஽
(ହ)

𝑅஺஻஼஽(ହ)
 =

ସ଴

௟ర
+

ସ଼ீమெమ

௥ల
  𝑒ସ|௬|/ℓ.     (7) 

 

Taylor expansion into the bulk 

One can use a Taylor expansion equation, in order to probe properties of a static black 
hole on the brane. For a vacuum brane metric, 

𝑔෤ఓఔ(𝑥, 𝑦) = 𝑔෤ఓఔ(𝑥, 0) −  ℰఓఔ(𝑥, 0 +)𝑦ଶ  −
2

ℓ
ℰఓఔ(𝑥, 0 +)|𝑦|ଷ 

        +
ଵ

ଵଶ
ቂℰఓఔ  −

ଷଶ

ℓమ
ℰఓఔ  +  2𝑅ఓఈఔఉℰఈఉ  +  6ℰఓ ℰఈ

ఈఔቃ
௬ୀ଴ା

𝑦ସ+ . ..                  (8) 

this shows in particular that the propagating effect of 5D gravity arises only at the fourth order of 
the expansion. For a static spherical metric on the brane, 

𝑔෤ఓఔ𝑑𝑥ఓ𝑑𝑥ఔ  =  −𝐹(𝑟)𝑑𝑡ଶ  +
ௗ௥మ

ு(௥)
+  𝑟ଶ𝑑𝛺ଶ,    (9) 

the projected Weyl term on the brane is given by 

ℰ଴଴ =
ி

௥
ቂ𝐻′ −

ଵ ି ு

௥
ቃ,        (10) 

ℰ௥௥ =  −
ଵ

௥ு
ቂ

ிᇲ

ி
−

ଵ ି ு

௥
ቃ,       (11) 

ℰఏఏ  =  −1 +  𝐻 +
௥

ଶ
𝐻(

ிᇲ

ி
+

ுᇲ

ு
).      (12) 

These components allow one to evaluate the metric coefficients in Equation (8). For 
example, the area of the 5D horizon is determined by 𝑔෤ఏఏ; defining 𝜓(𝑟) as the deviation from a 
Schwarzschild form for 𝐻, i.e., 

𝐻(𝑟)  =  1 −
ଶ௠

௥
+  𝜓(𝑟),       (13) 

where 𝑚 is constant, one find 

𝑔෤ఏఏ (𝑟, 𝑦) =  𝑟ଶ −  𝜓
ᇱቀଵ ା

మ

ℓ
|௬|ቁ௬ మ

+
ଵ

଺௥మ
ቂ𝜓ᇱ +

ଵ

ଶ
(1 +  𝜓ᇱ)(𝑟𝜓ᇱ −  𝜓)ᇱቃ 𝑦ସ + . .. (14) 

This shows how 𝜓 and its 𝑟-derivatives determine the change in area of the horizon along 
the extra dimension. For the black string 𝜓 = 0, and one has 𝑔෤ఏఏ(𝑟, 𝑦)  =  𝑟ଶ. For a large black 
hole, with horizon scale ≫ ℓ, from Equation (2) that 

𝜓 ≈  −
ସ௠ℓమ

ଷ௥య
 .      (15) 

This implies that 𝑔෤ఏఏ is decreasing as we move off the brane, consistent with a pancake-
like shape of the horizon. However, note that the horizon shape is tubular in Gaussian normal 
coordinates. 
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The “tidal charge” black hole 

The equations (3) form a system of constraints on the brane in the stationary case, 
including the static spherical case, for which 

𝛩 =  0 =  𝜔ఓ =  𝜎ఓఔ ,        𝜌̇ℰ =  0 =  𝑞ఓ
ℰ   =  𝜋̇ఓఔ 

ℰ .   (16) 

The nonlocal conservation equations ∇𝜈ℰ𝜇𝜈 = 0 reduce to 

ଵ

ଷ
𝛻ሬ⃗ఓ𝜌ℰ  +

ସ

ଷ
𝜌ℰ𝐴ఓ  +  𝛻ሬ⃗ ఔ𝜋ఓఔ

ℰ  +  𝐴ఔ𝜋ఓఔ
ℰ  =  0,     (17) 

where, by symmetry, 

𝜋ఓఔ
ℰ  =  𝛱ℰ ቀ

ଵ

ଷ
ℎఓఔ  −  𝑟ఓ𝑟ఔቁ,      (18) 

for some Πℰ (𝑟), with 𝑟𝜇 being the unit radial vector. The solution of the brane field equations 
requires the input of ℰ𝜇𝜈 from the 5D solution. In the absence of a 5D solution, one can make an 
assumption about ℰ𝜇𝜈 or 𝑔𝜇𝜈 to close the 4D equations. 

If one assume a metric on the brane of Schwarzschild-like form, i.e., 𝐻 = 𝐹 in Equation 
(9), then the general solution of the brane field equations is  

𝐹 =  1 −
ଶீெ

௥
+

ଶீℓொ

௥మ
,              (19)         

ℰఓఔ  =  −
ଶீℓொ

௥ర
[𝑢ఓ𝑢ఔ  −  2𝑟ఓ𝑟ఔ  +  ℎఓఔ] ,      (20) 

where 𝑄 is a constant. It follows that the KK energy density and anisotropic stress scalar are 
given by 

𝜌ℰ  =
௟ொ

ସగ ௥ర
=

ଵ

ଶ
𝛱ℰ .       (21) 

The solution (19) has the form of the general relativity Reissner–Nordstrom solution, but 
there is no electric field on the brane. Instead, the nonlocal Coulomb effects imprinted by the 
bulk Weyl tensor have induced a “tidal” charge parameter 𝑄, where 𝑄 = (𝑀), since 𝑀 is the 
source of the bulk Weyl field. We can think of the gravitational field of 𝑀 being “reflected back” 
on the brane by the negative bulk cosmological constant. If one impose the small-scale 
perturbative limit (𝑟 ≪ ℓ) in Equation (1), one find that 

𝑄 =  −2𝑀.       (22) 

Negative 𝑄 is in accord with the intuitive idea that the tidal charge strengthens the 
gravitational field, since it arises from the source mass 𝑀 on the brane. By contrast, in the 
Reissner–Nordstrom solution of general relativity, 𝑄 ∝ +𝑞2, where 𝑞 is the electric charge and 
this weakens the gravitational field. Negative tidal charge also preserves the spacelike nature of 
the singularity, and it means that there is only one horizon on the brane, outside the 
Schwarzschild horizon: 

𝑟௛ =  𝐺𝑀 ቈ1 + ට1 −
ଶℓொ

ீெమ
቉ =  𝐺𝑀 ቈ1 + ට1 +

ସℓ

ீெ
቉.    (23) 

The tidal-charge black hole metric does not satisfy the far-field 𝑟−3 correction to the 
gravitational potential, as in Equation (2), and therefore cannot describe the end-state of collapse. 
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However, Equation (19) shows the correct 5D behavior of the potential (∝ 𝑟−2) at short distances, 
so that the tidal-charge metric could be a good approximation in the strong-field regime for small 
black holes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has not considered any back-reaction on the brane metric, and the same flux will 
reasonably be seen by a distant observer for whom ∂τ asymptotically becomes a time-like Killing 
vector. However, the surplus energy must be released, since no BW or GR model can explain the 
Weyl anomaly, and this directly implies that probably holds only for a short time about the 
formation of the horizon.  
 

Gravitational collapse on the brane 

In this section we will study a continuous model for the gravitational collapse. One 
consider a Tolman-like model with a central (Oppenheimer-Snyder model) OS core. The star is 
therefore described as a cloud of dust with falling off continuous density and no sharp boundary. 
The classical four-dimensional behavior will be recovered in the limit of negligible star density 
(with respect to the brane vacuum energy density λ). 

The BW effective four-dimensional Einstein equations with vanishing cosmological 
constant on the brane as 

G = 8πT
ୣ୤୤       (24) 

Here one have 

T
ୣ୤୤ = ୣ୤୤uu + pୣ୤୤h + q(୳)

ୣ୤୤ + π
ୣ୤୤,   (25) 

where uμ is the unit four-velocity of matter (uμuμ = −1), hμν the space-like metric that projects 

orthogonally to uμ (hμν = gμν + uμuν) and π
ୣ୤୤ an anisotropic tensor. 

Figure 3  The profile of horizon radius in terms of  𝑙 𝑎𝑛𝑑 𝑀 
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  For an isotropic perfect fluid, BW corrections to GR are described by the effective 
quantities  

ୣ୤୤ =  (1 +


ଶ
+

୳


)       (26) 

Pୣ୤୤ =  (


ଶ
(2p + ) +

୳

ଷ
)     (27) 

    q
ୣ୤୤ = Q                  (28) 

π
ୣ୤୤ = ,              (29) 

where ρ and p are the (“bare”) energy density and pressure of matter. One also employed the 
following decomposition of the projection of the Weyl tensor on the brane (T.Clifon et al., 2017) 

−
ଵ

଼஠
ε = u ቀuu +

ଵ

ଷ
hቁ + Qu + Qu + ,   (30) 

corresponding to an effective “dark” radiation on the brane with energy density U, pressure U/3, 
momentum density Qμ and anisotropic stress . Note that non-local bulk effects can contribute 

to effective imperfect fluid terms even when brane matter is a perfect fluid. Bianchi identities 
supplied by the junction conditions produce two kinds of conservation equations: 

1. Local conservation equations (LCE): 

̇ + ( + p) = 0      (31) 

Dୟp + ( + p)Aୟ = 0      (32) 

2. Non-local conservation equations (NLCE’s): 

𝑢̇ +
ସ

ଷ
𝑢 +  DୟQୟ + 2AୟQୟ + ୟୠୟୠ = 0   (33) 

Qୟ̇ +
ସ

ଷ
Qୟ +

ଵ

ଷ
 Dୟ𝑢 +

ସ

ଷ
𝑢Aୟ + Dୠୟୠ + Aୠୟୠ + ୟ

ୠQୠ − ୟ
ୠQୠ = −

 ା ୮


Dୟ     (34) 

where Da is the spatially projected derivative ( defined by DaS
b......c = he

a h
b
 f .. ..h

g c∇eS
f... ...g for 

a = 1, 2, 3),  = ∇αuα the volume expansion, ˙Sa
......b = uα ∇αSa...

...b  the proper time derivative,      Aa 

= 𝑢̇a the acceleration, σab = D(aub) − (/3) hab the (traceless) shear, and ωab = −D[aub] the vorticity. 
 

Spherically symmetric dust 

For the case with zero pressure (p = 0), that is dust on the brane, the quantities in Eqs. 
(26), (27) and (29) reduce to 

௘௙௙ =  ቀ1 +


ଶ
ቁ + 𝑢     (35) 

௘௙௙ =
మ

ଶ
+

௨

ଷ
       (36) 

𝜋
௘௙௙

=        (37) 

Provided the matter density ρ does not vanish in the region of interest, one can use 
comoving coordinates in which uα = (−1, 0, 0, 0). In the following, only consider the class of 
five-dimensional metrics which are diagonal (sufficiently close to the brane at y = 0) and 
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spherically symmetric on the brane. In Gaussian normal coordinates, one can always write a bulk 
metric which is spherically symmetric on the brane as 

𝑑𝑠ଶ = −𝑁ଶ(, 𝑟, 𝑦)𝑑ଶ + 𝐴ଶ(, 𝑟 𝑦)𝑑𝑟ଶ + 2𝐵(, 𝑟 𝑦)𝑑𝑡 𝑑𝑟 + 𝑅ଶ(, 𝑟, 𝑦)𝑑Ωଶ + 𝑑𝑦ଶ    (38) 

Upon using the restricted freedom to change the four- dimensional coordinates on the brane, one 
can always set B(τ, r, 0+) = 0 [3], so that the brane metric reads 

ds2 
y=0

+ =−𝑁ଶ(𝜏, 𝑟, 0ା)𝑑𝑟ଶ + 𝐴ଶ(𝜏, 𝑟, 0ା)𝑑𝑟ଶ + 𝑅ଶ(, 𝑟, 0ା)𝑑Ωଶ          (39) 

Since just consider dust as brane matter, from the junction conditions at the brane, one  also 
obtain 

0 = 𝐾ఛ,௥
ା (𝜏, 𝑟) ≡

ଵ

ଶ

డ௚ഓೝ

డ௬ ௬ୀ଴శ
=

డ஻

డ௬௬ୀ଴శ
= 0.    (40) 

Using the above result together with the bulk symmetry Z2 with respect to the brane, we have 
B(τ, r, y) = y2 [V (τ, r) + O(y)]. Since the Weyl energy flux is related to B by 

𝑄௔~
డమ஻

డ௬మ
௬ୀ଴శ

       (41) 

one finds that Qa vanishes if V (τ, r) = 0, which is in fact what we are assuming. The coefficient 
gτr then vanishes fast enough on the brane so that, from the five-dimensional Einstein equations 

𝐺஺஻ = −𝑔஺஻ ,      (42) 

in the limit y → 0+, one obtains the condition  

0 = 𝐺ఛ௥௬ୀ଴శ =
ଶ

ே஺
ቀ

஺̇

஺

ோᇲ

ோ
+

ோ̇

ோ

ேᇲ

ே
−

ோᇲ

ோ
ቁ

௬ୀ଴శ
    (43) 

where a prime denotes ∂r and a dot ∂τ . Since our matter is pressure less, one can work in the 
proper time gauge N(τ, r, 0+) = 1 [3] and, using the residual gauge freedom in defining the radial 
coordinate r, one obtain 

𝐴(𝜏, 𝑟, 0ା) = 𝑅ᇱ(𝜏, 𝑟, 0ା).     (44) 

This relation implies a Tolman geometry on the brane  

𝑑𝑠ଶ = −𝑑𝑟ଶ + 𝑅ᇱଶ
𝑑𝑟ଶ + 𝑅ଶ𝑑Ωଶ,    (45) 

where R = R(τ, r) is a (generally non-separable) function of τ and r such that 4πR2(τ, r) equals he 
surface area of the shell comoving with dust particles located at the coordinate position r at the 
proper time τ. With the above symmetries, the vorticity, the acceleration and the Weyl energy 
flux vanish, ωa = Aa = Qa = 0, and one obtain the simplified 

 LCE 

𝜕ఛ +  = 0       (46) 

And NLCE’s 

𝜕ఛ𝑢 +
ସ

ଷ
𝑢 + ௔௕௔௕ = 0     (47) 

ଵ

ଷ
𝐷௔𝑢 + 𝐷௕௔௕ = −




𝐷௔.     (48) 
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The volume expansion is also easily computed as 

 = 𝜕௥⌊𝑙𝑛(𝑅ଶ𝜕௥𝑅)⌋ =
డడೝ൫ோయ൯

డೝ(ோయ)
,    (49) 

and for the shear one finds 

௔௕ =
ଵ

ଶ
𝜕ఛℎ௔௕ −


ଷ

ℎ௔௕ ,     (50) 

where hab = gab is the spatial part of the metric.  

 

Conclusions 

It has been attempted to show some of the key features of brane-world gravity from the 
perspective of astrophysics and cosmology, emphasizing a geometric approach to dynamics and 
perturbations. Inspired by the conjecture that classical black holes in the BW may reproduce the 
semi classical behavior of four-dimensional black holes, one has studied the gravitational 
collapse of a spherical star of dust in the RS scenario in order to clarify the underlying dynamics 
that leads to this interpretation. Regularity of the bulk geometry requires continuity of the matter 
stress tensor on the brane and can lead to a loss of mass from the boundary of the star. One has in 
particular shown that, excluding energy fluxes coming from the bulk Weyl tensor, a collapsing 
spherical star must have a spatially anisotropic, although isotropic in the angular directions, 
atmosphere, in order to have asymptotically flat solutions. Interestingly, such a feature is also 
present in the stress tensor of quantum fields on the Schwarzschild background. In visualizing of 
the results, fluctuation factor of 30 to 40 percent has been taken into consideration.  
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