
J. Myanmar Acad. Arts Sci. 2021 Vol. XIX. No.2 

NUMERICAL SIMULATIONS OF BINARY NEUTRON STAR MERGERS 
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Abstract 

Tidal deformity is assumed to be very important parameters in compact astrophysical objects such 

as binary neutron stars and black holes. Different kinds of tidal deformity for the binary neutron star 

mergers have been investigated and relevant numerical simulations have been implemented using 

mathematica coding. 
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Introduction 

As neutron stars are massive and compact astrophysical objects, the coalescence of binary 

neutron star systems is one of the most promising sources of gravitational waves observable by 

ground-based detectors. The gravitational wave signals emitted during a neutron star merger 

depend on the behavior of neutron star matter at high densities. So, the detection of gravitational 

waves opens the possibility to constraint the nuclear matter parameters characterizing the EoS[1]. 

A significant signature carried by gravitational waves is the tidal deformability of the neutron star 

and it is well explored analytically. In a coalescing binary neutron star system, during the last stage 

of inspiral, each neutron star develops a mass quadrupole due to the extremely strong tidal 

gravitational field induced by the other neutron star forming the binary. The dimensionless tidal 

deformability describes the degree of deformation of a neutron star due to the tidal field of the 

companion neutron star and is sensitive to the nature of the equation of state (EOS). This research 

will firstly study about mass for observable merging neutron star systems, then, tidal deformability 

and finally tidal deformability of binary neutron star. Besides, c and G are taken by 1 in this 

research. 
 

Mass for merger neutron star systems 

The future investigation of neutron stars merger such as GW170817 will have the factors 

of masses and spins like to those of known double neutron star systems. Known systems contain 

at least one pulsar and their masses and spins have been determined by pulsar timing. The total 

mass 1 2TM M M  is known with precision. For the former systems, it is straightforward to 

determine q and M. However, even in the latter cases, some information about M and q can be 

established, using the theoretical model that the minimum neutron star mass is 1.1M . Note that 

one can write the chirp mass 
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so the constraint 21.1 / 2TM M M   will determine  M q . When M2 is though smaller than or 

equal to M1, the binary mass ratio 1q  . 

Tidal deformability of neutron star 

Consider a static, spherically symmetric star of mass M retained in a static external 

quadrupolar tidal field ij with the response a quadrupole moment ijQ . In the local asymptotic rest 

frame (asymptotically mass-centered Cartesian coordinates) of the star with large r the metric 

coefficient gtt is given by  
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where /i in x r ; this expansion defines ij  and ijQ . That ijQ  is connected to the density 

perturbation  in the Newtonian limit by 
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and ij is assumed in terms of the external gravitational potential ext as
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To linear order in ij , the induced quadrupole will be of the form                              

            ij ijQ                                                               (6)

  

 

The tensor multipole moments 
ijQ and ij  can be decomposed as
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where the symmetric traceless tensors 2m

ijy are defined by (Thorne1980)
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with  sin cos ,sin sin ,cosn      . Thus, equation (6) can be written as      
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                                                  m mQ                                                                          (10) 

Without loss of generality, only one m can assumed no vanishing, this is enough to compute . 

Here   is a constant related to the 2l  , tidal Love number (apsidal constant) k2 by 
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Here R is the radius of neutron star and the constant of proportionality 𝜆 is the tidal deformability 

of the neutron star. It measures the magnitude of the quadrupole moment induced by an external 

tidal field and is proportional to the (dimensionless) l = 2 tidal Love number 
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To find the tidal deformability 𝜆 from Eq. (12), k2must be firstly calculated by using the method 

described by Hinderer: A perturbation of the spherically symmetric background metric 
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In the Regge-Wheeler gauge,  r is determined by
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with g a linear, quadrupolar, static, polar parity perturbation given by  
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where H and K are both functions of r. The perturbed Einstein equation gives a differential equation 

for H: 
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In vacuum, H can be written as a linear combination of  2

2 / 1P r M  and  2

2 / 1Q r M  where 
2

2P  

and 
2

2Q are the 2l m  associated Legendre functions. When expanded in powers of M r at 

infinity,    
32
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2 / 1 /Q r M O r M  . The coeffcient of 
2

2P is 

therefore related to the quadrupole moment of the star, and the coeffcient of 
2

2Q is related to the 

tidal field applied by the neutron star. By matching H(r) and its derivative across the surface of the 

star, one can show 
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where /C M R is the compactness of the star and the quantity of y = y(R) can be numerically 

integrated and evaluate y at the surface of the star.,  
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which gives rise to the frst-order differential equation 
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To find y = y(R), Eq. (19) can be numerically integrated and evaluate y at the surface of the star. 

where  m r is mass enclosed within the radius r ,  r and  p r are, the energy density and 

pressure respectively in terms of radial coordinate r  of a star. Then, by using polytrope equation 

of state, numerical integration Love number of Eq. (17) is shown in Figure (1). To pronounce the 

stellar equation of state (EOS), these quantities are calculated within the nuclear matter model 

chosen. For a given equation of state (EOS), Eq. (19) can be integrated together with the Tolman-

Oppenheimer-Volkoff equations with the boundary conditions  0 0y  ,  0 cp p and  0 0m  , 

where  0 ,  cy p  and  0m are the dimensionless quantity, pressure and mass at the center of the 

NS, respectively. The dimensionless tidal deformability can be defined as 
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R and M are the radii and masses of the binary components, respectively. k2 can be readily  

determined from a first-order differential equation simultaneously integrated with the two usual 

TOV structural equations and has values ranging from about 0.05 to 0.15 for neutron stars. So, the 

visualization figure of dimensionless tidal deformability   for TOV equation is shown in Figure 

(2). For black holes, k2 = 0. The tidal deformations of the neutron stars result in excess degeneracy 

of orbital energy and speed up the final stages of the inspiral. Tidal deformations act oppositely to 

spin effects, which tend to be more important during earlier stages of the observed gravitational 

wave signal. Then, the tidal deformability of the neutron stars present in the binary neutron star 

system can be combined to yield the weighted average as, 
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where 1 and 2 are the individual tidal deformabilities corresponding to the two components in 

the NS binary with masses m1 and m2, respectively with 2 1/ 1q m m  . 

 

Polytrope equation of state and Tidal deformability of binary neutron star 

To investigate impressive a common EOS constraint, a piecewise polytrope scheme is 

employed to simulate thousands of equations of state. Every one EOS follows causality, attaches 

at densities to the familiar EOS of neutron star crusts, is reserved by experimental and theoretical 
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studies of the symmetry properties of matter near the nuclear saturation density, and satisfies the 

observational constraint for the maximum mass of a neutron star, 2m M . Since the compactness 

parameter is defined by /C m R  , the star’s tidal deformability  is related to compactness 

parameter C by Eq. (14) and gives 5C .However, a better description 6C  is provided by 

for moderate masses because the behavior 1

2k C   is observed for a wide variety of EOS in the 

mass range  1.1 1.6M M M  .This mass range is the predictable range if perceived double 

neutron star binaries are typical merger candidates. But 0, 0m k  so that 2k is related to C with 

positive power. So, in this relevant range the important result become  

6aC                                                                                   (24) 

where   22/3 0.0093 0.0007a k    bounds the results for 1.1 1.6M M M  .The C-

dependence of  has interesting consequences for the binary deformability , equation (13). An 

immediate result motivated by the observation with piecewise polytropes that 6aC   and 

1 2R R  is                                                6

1 2q                                                                       (25) 

The above correlation is used in the analysis of the gravitational wave signal from GW 

170817. Then the binary tidal deformability  with different q values is shown in Figure (2). The 

common equation of state (EOS) constraint allows to show that the binary tidal deformability  is 

essentially a function of the chirp mass M, the common radius R , and the mass ratio q[4], but that 

its dependence on q is very weak. Substituting the expressions  6aC   and 1 2R R R  into 

Equation (23) 
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 which is very weakly dependent on q .Then Equation (26) 

becomes                                              
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where 0.0042 0.0004a    bounds the results for 1.1 1.6M M M  . In this research the 

masses of binary neutron are taken as 1 2m m , 1q  . Each equation of state in the piecewise 

polytrope scheme can compute   for all stellar pairs along the corresponding to M R . Then, 

Figure 4 show the results of , where equations of state are identified by their corresponding value 

of 1.4R , the radius of a 1.4M star[5]. 

  

 

Figure 1 Dimensionless Love number (k2) as a function of Compactness (C) 
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Figure 2  3D visualization of tidal deformity   
 

  

Figure 3  3D visualization of tidal deformity   with 1  and 2  

 

 

Figure 4 3D visualization of tidal deformity   
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Concluding Remarks 

In the present research, the tidal deformability of neutron star  and the dimensionless 

binary tidal deformability have been studied with the Love number k2 and the radius of neutron 

stars.  So, the corresponding tidal Love number is firstly calculated and the tidal deformability of 

static neutron star is calculated. So, tidal Love number (k2) as a function of compactness (C) is 

shown in Figure 1. From this figure, the numerical range of Love number for polytrope equation 

of state are obtained. By using this range, tidal deformability as a function of mass for physically 

realistic polytropes is shown by Figure (2). In this figure, TOV integration with each EOS 

parameter set results in a series of values that are shown as points colored by their radii R. There 

are well-defined upper and lower bounds for Λ (M), with the upper (lower) bound defined by the 

stars with the largest (smallest) radii. The lower bound for Λ(M) is an important constraint that 

should be taken into account in gravitational waveform modeling of BNS mergers. The 

dimensionless binary tidal deformability deformity   with 1  and 2 is demonstrated in Figure 

(3) with 1.q  Then, for each equation of state in the piecewise polytrope scheme, one can compute 

  for all stellar pairs along the corresponding to mass and radii. The results are displayed in Figure 

(4) which is similar to Figure (2), except that the dimensionless binary tidal deformability as a 

function of chirp mass M. Finally, in the case of binary neutron star system, many situations are 

possible, depending on the mass of components and EOS of matter. Besides, system with larger 

masses and less deformable matter result to prompt collapse to black hole after the merger. Binaries 

with smaller masses and more deformable matter lead to the formation of an unstable, possibly 

long-lived remnant. 
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