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Abstract 

The fusion cross sections and fusion barrier distributions of 16O + 148,154Sm systems have been 

calculated using different types of nuclear potentials. Simple one-dimensional potential model and 

coupled-channels method have been applied. The calculated results are compared with the 

experimental data. The calculated fusion cross sections using one-dimensional potential model 

disagree with the experimental data. The improvements have been made by inclusion of channel 

coupling effects. The calculated fusion cross sections are also analyzed by calculating the fusion 

barrier distributions which is sensitive to details structure of the colliding nuclei.  
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Introduction 

In nuclear physics, heavy-ion is any particle with a mass exceeding that of the helium-        

4 nucleus (𝛼-particle). Fusion is a process in which two or more nuclei combine to form a 

compound nucleus. The simplest approach to heavy-ion fusion reactions is to use a one-

dimensional potential model. This model deals with only the relative distance between a target 

and a projectile [Hagino, 1998]. For reactions involving heavy-ions, the fusion cross sections 

were found to be significantly different from the expectations of such a model, particularly at 

energies below the barrier where enhancement of several orders of magnitude was observed. 

Couplings of the relative motion to nuclear shape deformations and vibrations lead to an 

enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-

dimensional potential model. The couplings produce some interesting features in the barrier 

distribution for fusion. The fusion barrier distribution is defined as the second derivative of the 

energy-weighted fusion cross sections with respect the centre-of-mass energy E, that is, 

d2(Eσf)/dE2. The barrier distribution has been shown to be sensitive to the data related to the 

nuclear structure, such as the nuclear shapes, the multiple excitations and the nuclear surface 

vibrations etc. 

In order to make a systematic study of many systems, the choice of the potential is one of 

the most challenging aspects to compare theory with experimental fusion data both below and 

above the barrier. The scope of this work is to investigate the fusion cross sections and the 

corresponding fusion barrier distributions by using different nuclear potentials in the interaction 

and also take into account the channel coupling effects. 

Theoretical framework 

A simple estimate of the fusion cross section is obtained by the one dimensional potential 

model, where one considers the degree of freedom only of the relative motion between the 

colliding nuclei.  
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In this model, the fusion cross section for the compound nucleus formation, σF, is obtained from 

the standard formula: 
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where (E)Pl  
is the penetrability for the l-wave scattering. 

The couplings of the relative motion between the colliding nuclei to other degrees of 

freedom, e.g. their intrinsic excitations, nuclear transfer, can be caused the large enhancement of 

fusion cross section against predictions of the potential model. They are called channel coupling 

effects. The coupled-channels calculation is a standard theoretical approach to describe heavy-ion 

fusion reactions by taking the effects of nuclear intrinsic degrees of freedom into account. The 

full coupled-channels calculations quickly become very difficult to handle if many physical 

channels are included. The dimension of the resulting of coupled-channels problem is in general 

too large if several important intrinsic degrees of freedom exit simultaneously. For this reason, 

one often introduces the so called the no-Cariolis approximation to avoid these difficulties. In the 

no-Coriolis approximation, the angular momentum of the relative motion in each channel has 

been replaced by the total angular momentum J. The coupled-channels equations read 

  0,r
m

Ψ)r  (m nm
V)r(

n
ΨnεE

r

2
T

Z
P

Z
(r)

N
V

2
r2μ

2
1)(JJ

2
rd

2
d

μ2

2




 












 e

 

where Vnm are the matrix elements of the coupling Hamiltonian including the Coulomb and 

nuclear coupling components. E and εn are the bombarding energy in mass center frame and the 

n-th channel excitation energy, respectively. The coupled equations are solved by using the 

boundary conditions of the ingoing waves at a radius inside the barrier, and to be matched to 

appropriate the Coulomb waves at a radius outside the range of the nuclear potential. The 

minimum position of the Coulomb pocket inside the barrier rmin, and the finite distance rmax which 

is the position where both the nuclear and the Coulomb coupling are relatively sufficient small, 

are adopted by the program. Then the wave functions within rmin and beyond rmax can be 

expressed as  
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which is the local wave number for the n-th channel and Kn = Km if r is beyond rmax to the 

infinite.  
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are the incoming and the outgoing Coulomb functions, respectively. 
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In order to get the wave functions between rmin and rmax, the modified Numerov methods have 

been employed to solve the second order differential equations with setting the conditions at the 

boundary position rmin 

     minnminnminn riKrΨ
dr

d
,1rΨ  . 

With Eq. (6), the recurrence relation related to wave functions at ri+1, ri and ri−1 are obtained as 
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And h is the radial step for integrating the equations. By matching the ratio of the wave functions 

at rmax−h to those at rmax+h, the coefficients Cnm and Dnm in Eq. (4) then can be determined. With 

the above, the solution of the coupled-channels equation can be naturally given by a linear 

combination of Ψnm 
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With Eq. (9), the transmission coefficients can be easily obtained. Taking into account all the 

possible intrinsic states, the inclusive penetrability can be calculated by 
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Then, the fusion cross section can be given by 
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Results and discussion 

 We investigate the fusion cross sections and fusion barrier distributions by taking the 

different nuclear potentials in the inter-nuclear interaction. In this work, we use CCFULL code 

which solves the coupled-channels equations in computing the fusion cross sections, taking the 

relative motion and the intrinsic degrees of freedom [Hagino et al, 1999]. In the original code, 

Woods-Saxon potential is used as the entrance and coupling potentials. We substitute the original 

potential in the program with AW, BW, Prox-77 and Prox-88 potentials. These potentials are 

used as the entrance and coupling potentials in the calculations. We will describe the different 

nuclear potentials in the following. 

A refined version of the Woods-Saxon potential was derived by Broglia and Winther. 

This refined potential resulted in 
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a =0.63 fm and R0 = R1 + R2 + 0.29.                      

Here radius Ri has the form  21,ifmA0.98A1.233R 3
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where γ0= 0.95 MeV/fm2 and ks= 1.8. We label this potential as BW. 

The parameters “a” and “Ri” of the above potential were further refined by Winther to a modified 

form Aage Winther 1995. 

fm,

AA0.5311.17

1

3

1

2
3

1

1 



















































a
 

 .21,ifm0.09A1.20R 3
1

ii   

Here, R0 = R1+R2 only. We label this potential as AW.  

According to the original version of proximity potential 1977, the interaction potential VN(r) 

between two surfaces can be written as;
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The effective sharp radius, Ri, reads as  2 1,i      fm0.8A0.761.28AR 3
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Where, N and Z are the total number of neutrons and protons. In the present version, γ0 and ks 

were taken to be 0.9517 MeV/fm2 and 1.7826, respectively [Blocki et al, 1977]. We label this 

potential as Prox-77. Later on, using the more refined mass formula due to Möller and Nix, the 

value of coefficients γ0 and ks were modified yielding the values of 1.2496 MeV/fm2 and 2.3, 

respectively. We label this potential as Prox-88.  

 We calculate the fusion cross sections for 16O + 148Sm and 16O +154Sm systems with these 

different nuclear potentials by using 1-D potential model and coupled-channels method. 
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Figure 1 The fusion cross sections for the reaction of 16O + 148Sm system as a function of centre-

of-mass energy Ecm (MeV). The experimental data are taken from Ref. [Leigh et al, 

1995]. 

 

Figure 2 The fusion cross sections for the reaction of 16O + 154Sm system as a function of centre-

of-mass energy Ecm (MeV). The experimental data are taken from Ref. [Leigh et al, 

1995]. 

 Fig. 1 and Fig. 2 display the results of fusion cross sections using AW, BW, Prox-77 and 

Prox-88 potentials for 16O + 148Sm and 16O + 154Sm systems in 1-D potential model. We can see 

that the results of fusion cross sections for all potentials in one dimensional potential model 

cannot explain the fusion reactions used in this work. All nuclei considered here are assumed to 

be spherical in nature; however, deformation as well as orientation of the nuclei (that is channel 

coupling) can affect the fusion cross sections. 

Therefore, we investigate the fusion cross sections and fusion barrier distributions of the 

same systems using the coupled-channels method. We categorize these systems into two groups 

having different excitation nature:  

(i) Spherical projectile and vibrating target (16O + 148Sm) and   

(ii) Spherical projectile and deformed rotating target (16O + 154Sm). 

(i) The 16O + 148Sm System 

We consider 16O + 148Sm system, 148Sm is considered as vibrating nuclei. In the 

calculations, we include the quadrupole triple phonon (2+)3  and octupole triple phonon (3-)3 

states of 148Sm. The excitation energies and the deformation parameters of 148Sm are E2 = 0.55 

MeV, β2 = 0.182 for   2+ state and E3 = 1.16 MeV, β3 = 0.236 for 3- state.  
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Fig. 3 (a) and (b) show the fusion cross sections and the fusion barrier distributions 

obtained by using AW, BW, Prox-77 and Prox-88 potentials. The results of fusion cross sections 

with AW and BW potentials slightly underestimate with the experimental data. All potentials can 

reproduce similar peak character of fusion barrier distributions with the experimental barrier 

distribution of this system. Prox-77 and Prox-88 potentials give better agreement compared to 

AW and BW potentials for fusion cross sections as well as the fusion barrier distributions.  

Interestingly, fusion barrier distribution extracted from the results obtained with Prox-77 

potential well reproduces the second peak character in experimental barrier distribution at high 

energy region (see Fig. 3 (b)).  

(ii) The 16O + 154Sm System 

In this subsection, the fusion reaction of 16O projectile on 154Sm target has been 

considered. It is known from the excitation spectra of 154Sm that this nucleus is deformed. Thus, 

in the calculations it is taken as a well deformed nuclei with deformation parameters β2 = 0.330, 

β4 = 0.050 and excitation energy is E = 0.080 MeV. The fusion cross sections and the 

corresponding fusion barrier distributions are depicted in Fig. 4 (a) and (b), respectively. The 

fusion cross sections calculated with Prox-77 and Prox-88 potentials show nearly the same result 

with the experimental data than that of AW and BW potentials. Concern with fusion barrier 

distributions, all potentials can reproduce the gross structure of the experimental barrier 

distribution as shown in Fig. 4 (b). It can be seen that Prox-77 and Prox-88 potentials give better 

results than AW and BW potentials especially at low energies.  

                          

                                        (a)                                            (b)                                      

Figure 3 The comparison of (a) fusion cross sections and (b) the corresponding fusion barrier 

distributions using different nuclear potentials along with experimental data for 16O + 
148Sm system. The vertical line represents the experimental Coulomb barrier height. 
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                                       (a)                                                               (b) 

Figure 4  The comparison of (a) fusion cross sections and (b) the corresponding fusion barrier 

distributions using different nuclear potentials along with experimental data for 16O + 
154Sm system. The vertical line represents the experimental Coulomb barrier height.     

Conclusion 

We have performed the calculation of fusion cross sections with one dimensional 

potential model and coupled-channels method for 16O + 148Sm and 16O + 154Sm systems with four 

different nuclear potentials, namely, AW, BW, Prox-77 and Prox-88. The improvements of 

fusion cross sections have been made by inclusion of channel coupling effects for all potentials 

used in this point. According to the calculated fusion cross sections and the corresponding fusion 

barrier distributions, proximity type potentials give better results than AW and BW potentials and 

it can be used to make systematic study of heavy-ions fusion reactions.  
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