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Abstract 

In our research work, single particle energy levels of even-even silicon 

isotope 
28

Si are calculated by using the phenomenological Woods-Saxon 

central potential with spin-orbit interaction. The Gaussian basis wave 

function is also used in our calculation. The average values of kinetic 

energy, potential energy and centrifugal energy are calculated. The neutron 

separation energy and the root-mean-square radius of 
28

Si are also 

calculated. Our calculated shell spectra are similar as the prediction of the 

shell model. Moreover, the calculated last neutron separation energies are in 

good agreement with the experimental results.  

Introduction 

There are two basic types of simple nuclear models to investigate the 

characteristic of the nuclei. Nuclear models generally can be divided into 

independent particle models (IPM) in which the nucleons in discrete energy 

states are assumed, to move nearly independently in a common nuclear 

potential and the strong interaction (collective) models (SIM) in which the 

nucleons are strongly coupled to each other. The simplest SIM is the liquid 

drop model. The simplest IPM is also known the Fermi gas model (or) the 

shell model which is the basis of the semi-empirical mass formula. 

The Shell Model 

In nuclear physics, the nuclear shell model is a model of the atomic 

nucleus which uses the Pauli Exclusion Principle to describe the structure of 

the nucleus in terms of energy levels. The shell model is partly analogous to 

the atomic shell model which describes the arrangement of electrons in an 

atom, in that a filled shell results in greater stability. This observation that 

there are certain magic numbers of nucleons: 2, 8, 20, 28, 50, 82, 126 which 
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are more tightly bound than the next higher number, is the origin of the shell 

model. The nuclear shell model explains the existence of magic numbers. 

The energy levels are found by solving the Schrödinger equation for a 

single nucleon moving in the average potential generated by all other 

nucleons. Each level may be occupied by a nucleon, or empty. Some levels 

accommodate several different quantum states with the same energy, they are 

said to be degenerate. 

Some nuclei are bound more tightly than others. This is because two 

nucleons of the same kind cannot be in the same state. So the lowest energy 

state of the nucleus is one where nucleons fill all energy levels from the 

bottom up to some level. The energy levels increase with the orbital angular 

quantum number l, and s, p, d, f ... symbols are used for l = 0, 1, 2, 3, ..... The 

value of total angular momentum j and the multiplicity of the state is 2j+1.  

Schrödinger equation and Interaction 

In order to find the energy levels of a nucleus, Schrödinger equation is 

used. The time-independent Schrödinger equation for potential well is as 

follows. 

  

2

2 v(r) (r) E (r)
2M

  
       
  

               (1) 

The wave function (r)  can be expressed in terms of R(r) = ( )   and ( ) 

. 

  (r) R(r) ( ) ( )                      (2) 

The angular part term, 
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The Radial Part term is, 
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So, the radial part of Schrödinger equation is as follows. 

   
2 2
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2M dr r
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l l
              (5) 

The Gaussian basis wave function is used  
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l               (6) 

These linear equations can be solved by using Gauss elimination method 

which is the fundamental one for solving linear systems. And so norm matrix 

elements, kinetic energy matrix element and potential energy matrix elements, 

relative probability density and root-mean-square distance are analytically 

obtained by using Gaussian standard integral form. By diagonalzing the 

Hamiltonian matrix, the energy eigen-value is obtained with the help of 

FORTRAN PROGRAM. 

Woods-Saxon Potential 

The Dirac equation, which describes the motion of a spin ½ particle, 

has been used in solving many problems of nuclear and high-energy physics. 

Within the framework of Dirac equation, p-spin symmetry used to feature 

deformed nuclei, super deformation, and to establish an effective shell model. 

The interactions between nuclei are commonly described by using 

Woods-Saxon potential that plays a great role in nuclear physics. 

The form of the generalized Woods-Saxon potential is as follows. 

   0

(r R ) / a

V
V(r)

1 e 
 


                      (7) 

1
3

0
R r A  is the nuclear radius where r0 = 1.25 fm and A is the mass number.   

Typical values for the parameters are: 0
V 50MeV, a 0.5fm  . 

When using the Schrödinger equation to find the energy levels of nucleons 

subjected to the Woods-Saxon potential, it cannot be solved analytically, and 

must be treated numerically.    
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Normalization Constant  

To solve the physical quantities of 
28

Si nuclei, the normalization constant is 

calculated. The normalized condition is as follows; 

   *

0

(r) (r)dr 1


                    (8) 

The normalized Gaussian basis wave function is defined as follows;  

    

2

i

r
( )

b 1

i
i

U(r) A c e r


 
l

               (9) 

          

2

2 2
i j

1 1
r ( )

b b2 2( 1)

i j
i j

A c c e r dr
 



 
l

=1               (10) 

By using standard integral, the normalized constant is obtained. 
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In which normalized matrix element is  
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Kinetic Energy and Centrifugal Potential Energy 

 Kinetic Energy 

The kinetic energy is calculated as follows; 
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Kinetic energy matrix element is as follows 
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Centrifugal Potential Energy 

The centrifugal potential energy is follows 
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By using wave function, the centrifugal potential energy is described as 

follows; 
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The centrifugal potential matrix element is as follows;  
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Potential Energy 

In our calculation the phenomenological Woods-Saxon Potential is 

used. The form of the generalized Wood-Saxon potential is as follows. 

   
0

0

(r R )

V
V(r)

1 e / a



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                       (19) 

In this equation 
1

3
0 0

R r A  is the nuclear radius and A is the diffuse 

parameter. r0 is the radii distance from the center. The potential strength 

depends upon the number of proton and neutron. It is represent by,  
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 and the nuclear density,   
(r ) r R / a

1

1 e 
 


.  

Woods-Saxon potential including spin-orbit interaction is  
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              (20) 

The spin-orbit interaction is described as follows. 

   2

s so

1 d
V (r) V ( ) ( .s)

Mc r dr




l
l               

The total angular momentum is J s l  and the spin of a nucleon is 1
2 . 
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Probability Density and Root-Mean-Square Distance 

To analyze the structure of the nuclei, the probability density and root-

mean-square radius are calculated. 
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Probability Density 

The probability density is follows 

   
2

1

r

*

r
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By applying the Gaussian wave function, the probability density is calculated. 
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Root-Mean Square Distance 

The root-mean square distance of a particle is as follows. 

   2 * 2r r dr                       (25) 

By using normalized wave function, the root-mean square distance is 

described as follows. 
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Results and Discussions 

The single-particle energy levels of 
28

Si are calculated by using 

Gaussian basic wave function and the phenomenological Woods-Saxon 

potential including spin orbit interaction. The root-mean square radius and the 

last neutron separation energy of 
28

Si are also investigated.  

The calculated results of energy levels of 
28

Si are shown in Table (1) 

and the corresponding energy shell levels are shown in Fig. (1). In this Fig. 

(1), the innermost level 1s1/2 among the calculated other levels has the highest 

binding energy and it has gradually decrease to 1f7/2 levels away from the 
28

Si 

nucleus. The higher energy levels of 1s1/2 are split into two energy levels for 

same orbital angular momentum. The neutron separation energy of 
28

Si is also 

calculated and it is 8.447744MeV and it is nearly equal to experimental 

results. 

(24) 
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Finally, the single-particle energy levels of even-even silicon isotope 
28

Si and 
30

Si are calculated and are compared in Table (2). 

Conclusion 

In our research work, the ground state energy of the most abundance 

stable 
28

Si are calculated by using phenomenological Woods-Saxon potential 

including spin-orbital interaction and the strength of the potential is 50MeV, r0 

= 1.25fm and diffuse parameter a=0.53. It is found that Woods-Saxon 

potential provides a model for the properties of bound-state and continuum 

single-particle wave functions. Our calculated results are in good agreement 

with the experimental results.  

Table 1: The Physical Quantities of 
28

Si 

Single-Particle State 

of 
28

Si 

Total Energy 

(MeV) 

Average Root-Mean 

Square Radius (fm) 

Normalized 

Constant 

1
2

1s  -36.243832 2.285874 32.9676497 

3
2

1p  -25.328756 2.843373 21.2907179 

1
2

1p  -22.553915 2.779176 7.974858 

5
2

1d  -13.679509 3.329208 12.1807297 

3
2

1d  -8.0593294 3.331005 13.880731 

7
2

1f  -1.8267510 3.944157 2.687783 

 

Table 2: Energy levels of Even-Even Silicon Isotope  

Energy States 
Total Energy (MeV) 

28
14 Si  30

14 Si  

s-state s1/2 -36.243832 -36.76636 

p-state 
p3/2 -25.328756 -26.12143 

p1/2 -22.553915 -23.52642 

d-state 
d5/2 -13.679509 -14.63793 

d3/2 -8.0593294 -9.303161 

f-state f7/2 -1.8267510 -2.730027 
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Figure 1: Neutron single-particle energy levels of 
28

Si 
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