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Abstract 

The nuclei having asymmetric shapes in their ground state have now 

become an interesting topic in both theoretical and experimental nuclear 

structure physics. In my present work, the deformations in neutron-rich 

light-mass nuclei are investigated by using self-consistent mean field 

approach. Using the constrained Skyrme Hartree-Fock+BCS method on the 

three-dimensional Cartesian mesh, we calculated the potential energy 

surfaces (PES) for some selected light nuclei (
16

O, 
22

Ne
 
and 

28
Si) in    

plane where   represents ellipsoidal quadrupole deformation and γ , the 

degree of axial asymmetry.  
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Introduction 

One of the major challenges in nuclear physics is the study of the 

nuclear structures of nuclei which can provide the precious information in 

nuclear theory. In the past decades, the relativistic and non-relativistic self-

consistent mean-field approaches have been popular to study the structure of 

nuclei. In this report, we choose the non-relativistic mean field theory and 

calculate their potential energy surfaces to verify the shapes of 
16

O, 
22

Ne
 
and 

28
Si nuclei.  

The shape of a deformed nucleus can be parameterized by representing 

the nuclear surface via expansion of the spherical harmonics,   ,Y , as 

follow: 
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where   ,R  denotes the nuclear radius in the direction  θ, ,   indicates 

the order of the expansion, 0R  is the radius of a sphere containing the same 
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total volume and   the expansion coefficients describe the variations of the 

nuclear shape with different multipolarity around the ground state. 

 In my calculation, the quadrupole deformation ( =2) which is the 

most important deviation from spherical shape is taken into account. For the 

case of pure quadrupole deformation, the Eq. 1 is given by  
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Such quadrupole shapes can either have axial symmetry, in which case one 

distinguishes elongated (prolate) and flattened (oblate) shapes, or the 

deformation can be without axial symmetry resulting in different elongations 

along the three axes of the system, referred to as triaxial shape.  

 There is a set of parameters introduced by Bohr [1] which corresponds 

to something like polar coordinates in space of ),( 2220   and is defined by  
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where the parameters 2  
and   represent the deformation and non-axiality of 

the nuclear shapes, respectively.  

 The aim of this present work is to study the shapes of light nuclei (
16

O, 
22

Ne, 
28

Si) using self-consistent mean field approach. The structures of these 

nuclei will be investigated by calculating the potential energy surfaces in beta-

gamma (   ) plane which can clearly show the structure of nuclei. Then 

Ev8 program which solves the Skyrme-Hartree-Fock+BCS problem using a 3-

dimensional Cartesian mesh will be employed in this calculation [2]. 
 

Formalism 

I. Hartree-Fock Equations with Skyrme Interaction 

 The aim of the Hartree-Fock method is to approximate the two-body 

Hamiltonian operator as an effective single-particle potential. The full many-
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body Hamiltonian can be written in terms of a one-body kinetic energy term 

and a two-body force as follows 

                                   
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where the first term is the usual kinetic energy operator, and the second is the 

two-body force including the Coulomb interaction. The simplified expression 

for the Hatree-Fock equations is obtained 
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 This equation is known as the Hartree-Fock equation. The Hartree-

Fock method is useful one because it gives an introduction to the solution of 

many-particle system and to the concepts of self-consistent field. In the 

following, the Skyrme approximation which can greatly reduce the number of 

integrations over single particle states will be discussed. 

 In non-relativistic approach, the most famous effective nucleon-

nucleon interaction is the Skyrme type which was performed by Vautherin 

and Brink [3] has been used for this work. In the Skyrme-Hartree-Fock 

approach, the total binding energy of the system is given by the sum of the 

kinetic and Coulomb energies as well as the Skyrme energy functional that 

models the effective interaction between nucleons [4].  

The full Skyrme interaction can be shown in the form of the following 

equation, 

 SkkinCoulomb EEEE  .   (7) 

A Skyrme force that consists of central, spin-orbit and tensor interactions is 

given by 
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The Skyrme energy ( Sk
E ), is derived by evaluating, 
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where MP̂  is position exchange operator and qP̂  is isospin exchange operator. 

Finally, the result of the Skyrme interaction is given by 
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 The Skyrme interaction enormously simplifies the calculations with its 

zero-range form and has been very successfully used to describe the masses, 

charge radii and excited states of finite nuclei.  

II. Constrained Hartree-Fock Method 

 The map of the energy surface as function of quadrupole deformation 

can be obtained by imposing constraints on the axial and triaxial mass 

quadrupole moments in the Hamiltonian. There can be many cases where it 

may be desirable to calculate other points on the energy surface. In this work, 

constrained Hartree-Fock (CHF) method is used to calculate the energy 

surface as a function of collective parameters of ""q  such as quadrupole 

deformation. In this method, a wave function such as  q
 

is used to 

minimize the total energy under the constraint that a certain single particle 

operator Q̂ which has a fixed expectation value 

 ,Q̂HH 
 
where .ˆ  Qq   (11) 
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Results and Discussion 

 In this calculation, constrained quadrupole moment is added to the 

Hamiltonian to generate energy surfaces. The Sly 4 parameter set is chosen for 

this calculation. Moreover, Ev8 code is used to solve the mean-field equations 

for the Skyrme energy density functional. In this code, the single particle 

wave functions are discretized on a 3-dimensional (3D) mesh to solve the 

mean-field equations. 

A representation in terms of the deformation parameter ( q ) and the triaxiality  

angle ( ) is used to describe the shapes of nuclei. Their relationship can be 

represented by the following equations 
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 We select three light nuclei (
16

O, 
22

Ne
 
and 

28
Si) and calculate their 

potential energy surfaces. In order to know the shapes of these nuclei, the 

calculated potential energy surfaces as the function of deformation parameters 

are depicted in the following figures. 
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Figure 1:The potential energy surfaces as the function of deformation 

parameter ( ) for (a) 
16

O (b) 
22

Ne and (c) 
28

Si obtained with the 

Sly4 parameter set. 

 For these calculations, we use the same symmetry axis for prolate and 

oblate configurations. The minimum energy located at the positive 

deformation parameter describes the prolate shape while the minimum energy 

with negative deformation parameter stands for the oblate shape. Fig. 1 (a) is 

the potential energy surface of 
16

O nucleus which shows the well deep 

spherical configuration of the magic number. Its ground state energy is 

predicted to have -128.29 MeV at the origin. As can be seen in Fig. 1(b), there 

is the deep energy minimum of prolate configuration for 
22

Ne which has the 

ground state energy of -177.17 MeV at  4.7. In Fig. 1(c), the PES of 
28

Si 

nucleus shows the oblate configuration with ground state energy                           

(-243.29 MeV) and its quadrupole deformation is -0.38.  

In order to investigate whether there is deviation from axial symmetry 

in these nuclei, it is necessary to calculate their potential energy surfaces in 

   plane. 

 

 

 

 

(c) 
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Figure 2: The potential energy surfaces of (a) 
16

O (b) 
22

Ne and (c) 
28

Si in the 

   plane obtained with the Sly4 parameter set. 

To this end, we plotted the potential energy surfaces of three even-

even nuclei, 
16

O, 
22

Ne
 
and 

28
Si in    plane as shown in Fig. 2. These 

contours are iso-energy lines, at every 0.2 MeV related to the ground state. In 

these figures,   represents the magnitude of deformation. The triaxiality 

angle 0 corresponds to prolate shapes, whereas 
60  to oblate shape 

and triaxial for  600  . The potential energy surface (PES) for the 
16

O 

nucleus in the   ,  plane is plotted in Fig. 2(a). It has the minimum energy 

at the origin showing that it has the nature of spherically symmetric. Fig. 2(b) 

indicates 
22

Ne nucleus is prolately deformed in its ground state minimum 

(a) (b) 

(c) 
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point which is located at 0  axis. Similarly, the PES of 
28

Si shows that it 

has the oblate minimum energy along 60  axis as can be seen in Fig. 2(c). 

From these figures, we can conclude that these nuclei are axially symmetric. 

Summary and Future Work 

In this work, we have calculated the energy surfaces as a function of 

deformation parameter for some light nuclei, namely, 
16

O, 
22

Ne and 
28

Si. We 

also calculate the energy surfaces in (   ) plane in order to check the 

deviation from axial symmetry in these nuclei. It is found that 
16

O nucleus has 

spherical shape as it can be expected and the other two nuclei 
22

Ne and 
28

Si 

have prolate and oblate shapes, respectively. No deviation from axial 

symmetry is found for these two deformed nuclei.  

Recent experiments suggest that nuclei can have permanent triaxial shape. 

This new discovery motivates us to investigate the internal structure properties 

of the nuclei. We will investigate the existence of triaxial shapes in light 

nuclei by calculating the PES in (   ) plane.  
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