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Abstract 

In this research, differential cross section of Cπ),KC( Σ
1212

6  reaction is formulated by Green’s 

function method.  Imaginary part of this formulation, called spectral function, gives the spectral 
shape of this reaction.  From the spectrum, the resonance position of the reaction is investigated.  
Green’s function for this reaction is numerically solved.  Then the spectral function is calculated 
and the various spectral shapes are investigated with simple case of complex square-well 
potentials.  The resulting spectral shapes are compared with those of Morimatsu and Yazaki, 
obtained by analytically solved Green's function.  It was observed that the spectral shapes obtained 
by both methods, i.e., numerical and analytical, are almost identical.  This fact shows an advantage 
of numerical method in cases where analytical solutions are not possible.  

Keywords: Green’s function, spectral function, resonance position. 
 

Introduction 

 In 1984, Morimatsu and Yazaki first gave a formalism for treating unstable (or 
continuum) states in the formation processes.  It had been shown that the formation probabilities 
can be calculated from the analytically solved Green’s function.  Then they used this formalism 
to examine the effect of the unstable bound state on the formation probabilities.  The simple case 
of a complex square-well potential is studied in detail.  They showed that the unstable bound 
state gives no observable effect either in the scattering or in the formation process. 

Many physical quantities are varying functions.  For example, formation cross section is 
slowly varied with the total energy of the system.  But at certain energy, the value of cross 
section is rapidly varied and spectral shape becomes with a very high peak.  This phenomenon is 
called resonance.  Then the energy value and observed level width of this high peak will give the 
resonance position of the reaction. 

The purpose of our research is to study the spectral shape of Cπ),KC( 12
Σ

12
6  reaction with 

complex square-well potential by using numerically solved Green’s function.  Then we will 
compare these spectral shapes with those treated by analytically solved Green’s function which is 
proposed by Morimatsu and Yazaki.  The numerically solved Green function and the calculations 
of formation probability of the reaction are given in this research. 
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Formulation of Formation Cross Section of Cπ),KC( 12
Σ

12
6  

Transition Matrix Element 

 The transition matrix element can be generally expressed as 

 StateInitialTStateFinalTfi  . (1) 

 

Figure 1  Schematic diagram of the Cπ),KC( 12
Σ

12
6  reaction 

 

In the initial state of the reaction, 0k and 0E are momentum and total energy of incident 

kaon.  Nq and cq are internal momentum of a nucleon and core nucleus.  q  is the internal 

momentum between nucleon and core nucleus.  k
~

 is relative momentum between incident kaon 
and one nucleon of target nucleus.  Then in the final state of the reaction, 1k and 1E  are 

momentum and total energy of outgoing pion.  2k and 2E  are momentum and total energy of 

recoil nucleus. q  and cq  are internal momentum of Σ-hypernucleon and core nucleus. q is 

internal momentum between Σ-hypernucleon and core nucleus.  k~
is relative momentum 

between outgoing pion and Σ-hypernucleon.  

Transition matrix element fiT for the above reaction can be expressed in terms of relative 

and center of mass momenta of initial state and final state as 
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pion wave function.  In order to account the all effects of all internal momenta of initial state and 
final state, completeness relations corresponding with these momenta are inserted into the 
equation of transition matrix element as  
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The internal particular momenta of q and cq  can be expressed into relative and center of mass 

momentum as 
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By using the delta function properties, (5) becomes as 

   i
n

fcfi td
EE

c
T   qkkqqkkk

~~
)(

22

)( )(
021

10

2


 (6) 

where  cqq  , cmM

M

c

c qkq 
 2 , cmm

m

mm
m

Nk

k

Nk

N qkk   0

~
,






  mm

m

mm

mm







 cqkkk 21~
 

Transition probability is 
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Differential Cross Section  

After the matrix element of the reaction is calculated transition rate and cross section are 
obtained by following relations: 
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can be easily calculated by using the periodic boundary condition and  the wave functions for 
final state in Cartesian coordinate. 
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The differential cross section can be written as 
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Energy Conservation Term 

Then energy conservation term )( fi EE   can be written by using delta function properties,
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Differential cross section equation (14) becomes as 
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The differential cross section can be written in terms of coordinate representation as  
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 From the above equation, the imaginary term can give the spectral shape of the 
differential cross section with respect to the total energy of the outgoing pion.  Before we 

calculate the spectral function, we first evaluate the matrix element, rr   iHE c

1 , by using 

Green’s function method. 
 

Green’s Function and Spectral Function 

Formulation of Green’s Function 

 The matrix element rr   iHE c

1 can be defined as Green’s function ),( rr G . Green’s 

function can be separated into radial part and angular part.  The Green’s function ),( rr G can be 

separated into radial part and angular part as 
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The radial part of Green’s function satisfies the Schrödinger radial equation 
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where  
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discontinuity.  It is convenient to consider the two intervals a ≤ r < r′ and r′ < r ≤ b separately and 
write the Green’s function in the following forms.                      
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By applying the properties of the Green’s function: the Green’s function is continuous at r 
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By inserting the value of G(r, r′) from (26) into (20), we get 
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where )r(u  and )r(v  are the stationary and out-going solutions of the Schrödinger equation. 

The boundary conditions of these solutions are 1r)0(u  
  at the origin and )kr(hkr)r(v   in 

the asymptotic region r , respectively. These particular solutions can be derived by solving 
Schrödinger radial equation with the use of difference method. 

 

Calculation of Spectral Function   

In order to study the spectral shape of the reaction, we considered only the spectral 
function from the formulation of formation cross section as  
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The simple notation ‘Q’ is used for )( 10 kk  and mathematical expansion of the free particle 

state wave function as  
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The solution of Green’s function is 
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The imaginary term from Eq. (28) will give spectral shape of this reaction. By 
substituting the solution of Green’s function Eq. (31), harmonic oscillator wave function of 
carbon target for s-state and mathematical expansions of free particle wave functions, we have 
solved the imaginary term called spectral function.  Since the solutions of )r(u  and )r(v 

depend on the total energy of Σ-core-nucleus, the spectral function is the function of EΣ-core.  Then 
we obtained the spectral function as 
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The spectral functions for various total energies of Σ-core-nucleus are numerically 
calculated and compared with those calculated by Morimatsu and Yazaki.  The obtaining results 
are explicitly discussed.  
 

Result and Discussion  

In order to simulate the spectral shapes for the 12C target, we used two cases of complex 
square-well potentials from as shown in Table (1). Our calculated spectral functions with 
arbitrary unit for above two cases are compared with those of Morimatsu and Yazaki.  It was 
found that all results are equivalent. 

For case (a) potential, (-26, -2i) MeV, the spectral function calculated with numerically 
solved Green’s function (i.e., our result) is shown in Fig. (2) and that with analytically solved 
Green’s function calculated by Morimatsu and Yazaki is also shown in Fig. (3). The observed 
peaks are found at about -3.47MeV (our result) and -3.48 MeV (result of Morimatsu and Yazaki) 
of   EΣ-core  respectively.  The two results are agreed. 

The spectral functions for case (b) potential, (-16, 0i) MeV, are expressed in Fig. (4) and 
Fig. (5) for our result and their result respectively.  The sharp peaks are found at 1.38 MeV (our 
result) and at 1.16 MeV (their result).  For this case, we also determined the spectral functions 
with various values of imaginary part of potentials, W= -2, -3 and -6 MeV.  These are shown in 
Fig. (6).  In this figure, it is observed that as |W| increases, the peak positions of these cases are 
dramatically decreases.  Since the results for various |W| from (Morimatsu and Yazaki) are also 
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shown in Fig. (7), our results can be clearly compared with those.  It can be observed that the two 
results are almost identical.  

Table 1 The strengths of the complex square

Case V(MeV) 

a -26 
b -16 

                                        EΣ-cor (M

Figure 2 Spectral function calculated by 
numerically solved Green’s funciton for 
case (a) (our result). 

                                            EΣ-cor (M

Figure 4 Spectral function calculated by 
numerically solved Green’s funciton for 
case (b) (our result).  
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shown in Fig. (7), our results can be clearly compared with those.  It can be observed that the two 

The strengths of the complex square-well potentials (Morimatsu and Yazaki)
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-2 
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Spectral function calculated by 
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Figure 3 Spectral function calculated by 
analytically solved Green’s funciton for case (a) 
(Result of Morimatsu and Yazaki)
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Spectral function calculated by 
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Figure 5 Spectral function calculated by 
analytically solved Green’s funciton for case (b) 
(Result of  Morimatsu and Yazaki)
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Figure 6 Spectral functions calculated by numerically solved Green’s funciton for case (b) with 
W=0, -2, -3 and -6 MeV (our results).  

      

 (W=-2 MeV) 

Figure 7 Spectral functions calculated by analytically solved G
W= -2, -3 and -6 MeV (Results of

We firstly concluded that formation cross section can be calculated by the use of Green’s 
function method.  Secondly, the solutions of Green’s function 
numerically and analytically.  Since these solutions are equivalent, numerically solved Green’s 
function can also be used to study the formation cross section in nuclear physics.  Thirdly, since 
the spectral function can give the re
estimate the total energy or binding energy of the Σ

Vol. XVIII.No.2A 

 

EΣ-core (MeV) 

Spectral functions calculated by numerically solved Green’s funciton for case (b) with 
6 MeV (our results).   

             

    (W=-3 MeV)       (W=-

Spectral functions calculated by analytically solved Green’s funciton for case (b) with 
6 MeV (Results of Morimatsu and Yazaki). 

  

Conclusion 

We firstly concluded that formation cross section can be calculated by the use of Green’s 
function method.  Secondly, the solutions of Green’s function can be obtained by both 
numerically and analytically.  Since these solutions are equivalent, numerically solved Green’s 
function can also be used to study the formation cross section in nuclear physics.  Thirdly, since 
the spectral function can give the resonance position of the Σ-hypernuclear system, we can 
estimate the total energy or binding energy of the Σ-hypernuclear state. 
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Spectral functions calculated by numerically solved Green’s funciton for case (b) with 

 

-6 MeV) 

reen’s funciton for case (b) with 

We firstly concluded that formation cross section can be calculated by the use of Green’s 
can be obtained by both 

numerically and analytically.  Since these solutions are equivalent, numerically solved Green’s 
function can also be used to study the formation cross section in nuclear physics.  Thirdly, since 

hypernuclear system, we can 
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