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Abstract 

Timescape model is a phenomenological cosmology model without dark energy. By revisiting 

Einstein’s strong equivalence principle and extending at the general average of the cosmological 

Einstein’s equation, one can construct averaging schemes and timescape model. Detailed 

description of that timescape cosmology and expansion laws in general relativity within a 

covariant fluid approach have been studied. Physical interpretation of the results are carried out 

and visualizations of interesting results are implemented. 
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Introduction 

 Dark energy has been described as the biggest problem in cosmology. In a different 

perspective, dark energy is not the internal energy of a mysterious fluid, but a misidentification 

of those aspects of cosmological gravitational energy which by virtue of the equivalence 

principle cannot be localized: gradients in the energy associated with the varying curvature of 

space and the varying kinetic energy of the expansion of space. These are important aspects of 

gravitational physics in universe, which at the present epoch is very inhomogeneous, dominated 

by voids. ( Adler. R, Bazin.M, Schiffer. M, 1975) 

One uses the formalism of Thomas Buchert in taking account of backreaction in the 

evolution of Einstein’s equations. One crucial insight is that gravitational energy and clock rates 

are defined with respect to a notion of infinity. Bound system where space is not expanding, 

including all galaxies live within finite infinity, but volume average positions in free expanding 

space lie beyond it there is a difference in gravitational energy and spatial curvature between the 

two locations. The differences were initially miniscule but are large today. Taking account of the 

initial conditions set by primordial inflation at the time of last scattering, when the cosmic 

microwave background was laid down, a quantitative model of the universe is developed. 

Relative to bound system observers, ideal observers at volume average positions in voids will 

measure an older age of the universe, a lower isotropy.  These differences can be systematically 

quantified. On account of the variance in clock rates volume average observers in voids infer no 

apparent "cosmic acceleration", but observers in bound systems do. Apparent acceleration begins 

when the void volume fraction reaches 59%, at a redshift of order z = 0.5 to 1.0 (depending on 

whether one uses the CMB or supernovae as an estimator). The mystery of dark energy is 

explained purely in Einstein's theory, through a deeper understanding of those parts of general 

relativity, which Einstein himself recognised as being difficult: the understanding of gravitational 

energy, given that space itself is dynamical and may contain energy and momentum. ( Buchert.T, 

1999)  

                                                      
1 Dr, Associate Professor, Department of Physics, Yangon University, Myanmar. 
2
 Dr, Assistant Lecturer, Department of Physics, University of Yangon. 

3  
Dr, Assistant Lecturer, Department of Physics, University of Yangon. 

4 Dr, Assistant Lecturer, Department of Physics, University of Yangon. 
5
 Dr, Retired Pro-Rector (Admin) International Theravada Buddhist Missionary University, Yangon. 



366               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2C 

Although matter in the Universe was extremely uniform when the cosmic microwave 

background radiation formed, since then gravitational instability led to an increasingly complex 

hierarchy of structures at late epochs a cosmic web of voids with galaxies and clusters in sheets, 

filaments and knots. In the standard model of cosmology this hierarchy is treated by assuming an 

average background universe which expands uniformly, just as if no structures were present. The 

nonlinear growth of structure is then formally treated and simulates using Newtonian gravity 

only. In other words, the background evolution and the evolution of structure do not couple to 

each other, an idealization at odds with the very foundations of general relativity which 

generically demand a coupling between matter and geometry. 

After that, Friedmann–Lemaître–Robertson–Walker (FLRW) model keeps spatial 

curvature uniform everywhere and decouples its evolution from that of matter, which is again not 

a generic consequence of Einstein’s equations. The difference between an averaged generic 

evolution and an ideal FLRW evolution is usually called backreaction, and is potentially 

significant for interpreting observations of the actual inhomogeneous Universe. ( Buchert.T, 

1999) 

Dark Energy and Dark Matter 

In the standard model of cosmology one has to conjecture the existence of two 

constituents, if observational constraints are met, that both have unknown origin: first, a 

dominant repulsive component is thought to exist that can be modeled either by a positive 

cosmological constant or a scalar field, e.g. a so-called quintessence field. Besides this Dark 

Energy, there is, secondly, a non-baryonic component that should considerably exceed the 

contribution by luminous and dark baryons and massive neutrinos. The Dark Matter is thought to 

be provided by exotic forms of matter, not detected in (non-gravitational) experiments. 

According to the concordance model, the former converges to about ¾ and the latter to about     

¼ of the total source of  Friedmann’s equations, up to a few percent that have to be attributed to 

baryonic matter and neutrinos (in the matter-dominated era).(Buchert.T, 2007) 

Averaging Strategies: Different ‘Directions’ of Backreaction 

The notion of averaging in cosmology is tied to space-plus-time thinking. Despite the 

success of general covariance in the four-dimensional formulation of classical relativity, the 

cosmologist’s way of conceiving the Universe is evolutionary. This breaking of general 

covariance is in itself an obstacle to appreciating the proper status of cosmological equations. 

The standard model of cosmology is employed with the implicit understanding that there is a 

global spatial frame of reference that, if mapped to the highly isotropic Cosmic Microwave 

Background, is elevated to a physical frame rather a particular choice of a mathematical slicing 

of spacetime. (Witshire. D. L, 2007) 

This point is raised as a criticism of an averaging framework, as if this problem were not 

in the standard model of cosmology. Again, the ‘natural’ choice for the matter model ‘irrotational 

dust’ is a collection of freely-falling continuum elements, now for an inhomogeneous continuum. 

For such a generalized collection of fundamental observers, the 4-metric form reads 
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where latin indices run through 1…3 and    are local (Gaussian normal) coordinates. Evolving 

the first fundamental form    of the spatial hypersurfaces along          defines their second 

fundamental form 

        
              

 

 
          

with the extrinsic curvature components       Such a comoving (synchronous) slicing of 

spacetime may be considered ‘natural’, but it may also be questioned.[(Buchert.T, Ehlers.J, 1995] 

 Effective Description of Inhomogeneous Universe Models 

Restricting attention to a universe filled with irrotational dust, i.e. irrotational pressureless 

matter, one spatially average the scalar parts of Einstein equations  with respect to a collection of 

comoving (generalized fundamental) observers over a compact, rest mass preserving spatial 

domain D , and obtain the following set of equations 
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where  Da  is the effective volume scale factor 
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iDV  the initial volume of the domain and )(tVD  its volume at a proper time t, 

DDD
VMae /3 , the density of irrotational dust averaged over 

D
RD,  the spatial scalar curvature 

averaged over D  and DQ  the kinematical backreaction 
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with   the rate of expansion and 
ij

ij
2

1
:  the rate of shear with the shear tensor 

components ij . Equations (1) and (2) govern the kinematics of the effective scale factor and 

equations (3) and (4) express the conservation law for the dust matter and the backreaction terms, 

respectively. 
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General Expansion Law in Newtonian Cosmology 

Non Commutation Time Evolution and Averaging 

Let us consider a portion of the Universe D (t) with volume V(t). Henceforth, one 

concentrates on the expansion which one describes by the local expansion scalar            

Introducing the scale factor via the volume,         , one can write the spatial average of      

  on the domain D as  

         .                                  
 

 
    
 

     
  

 
   

   

  
                                                (7) 

As written in (7) the spatial average can be calculated as a simple Euclidean volume 

integral over the domain D, the mail advantage of a Newtonian treatment. The subscript                   

D indicates that the averages (as well as the scale factor) depend on morphological properties of 

the spatial such as content, shape and connectivity. 

 
 

Figure 3 Variation of Kinematical 

Backreaction with expansion scalar and 

shear. 

 
 

Figure 4 Time evolution of energy density in       
terms of scalar and density. 

 
 

Figure 1 The evolution of density of                

irrotational dust in terms of mass and scale 

factor. 

 

 
Figures 2 The evolution of scale factor with 
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One evaluates the evolution of the average in a tube of trajectories of fluid elements, i.e., 

one introduces a Lagrangian mapping                       which sends fluid particles from their 

initial (Lagrangian) position    to their final (Eulerian) position    . One uses the Jacobian of this 

mapping,        , J: = det  
   

   
 , to transform spatial averages to volume integrals in 

Lagrangian space: 
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Using the Lagrangian time-derivative, 
 

  
  

 

  
     one obtains the nonlinear commutation rule. 

(Buchert. T, Ehlers. J, 1995) 
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Equation (9) shows that the evolution of the average and the average over the evolved field do 

not commute, their difference being given by the nonlinear fluctuation term on the right hand 

side. 

The Generalized Friedmann Equation 

Averaging Raychaudhuri’s equation for the evolution of the expansion scalar, the scale 

factor    is found to obey the general expansion law. (Carroll, S. M., 2004) 
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where the source term Q depends on the fluctuation term in (2.3) and the magnitudes of rotation 

( ) and shear ( ) of the flow, 

                                                      
 

 
                                           (11)                                             

   denotes the total mass contained in D . 

Eq. (11) may be rewritten as a standard Friedmann equation for the actual source term            

                                                                ,                         (12) 

where          
   is the pure average matter density. Eq. (12) shows that, for irrotational 

flows ,the additional “dynamical mass” is a positive term which adds to the matter density, if    

is larger than the fluctuation                      
     . This suggests to add the 

source term Q to the list of dark matter candidates: strongly sheared inhomogeneities could 

“fake” an additional density which  leads to an overestimate of the density parameter. 

Integrating eq.(11) with respect to time yields the generalized form of Friedmann’s differential 

equation: 

                           
   
   

  
   

     

   
  

  

 
  

 

   
      

 

  
 

 

   
   

 .            (13)                        

Averaging Globally Homogeneous (Isotropic) Universes 

One now assumes that a global Hubble flow exists on some large scale A and that the 

expansion-factor on that scale obeys Friedmann's differential equation Eq.(13) for (Q = 0); 
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on the scale A we write     . Splitting the velocity gradient       into its Hubble part and a 

peculiar-velocity gradient                        , where     H(t) = 
  

 
,    one obtains:            

                                                                                                         (14)  

After averaging, the last equation leads to a relation Between the Hubble function H(t), 

the “effective Hubble function"        
   

   
, and the peculiar-velocity field               

                                                             
 

 
  
     

     
                                                        

   may be interpreted as that Hubble function which is inferred from the (possibly anisotropic 

and rotational) dynamics of the spatial domain  D. (This interpretation is possible if statistical 

averages of many such spatial domains are considered, but at present, one only measures one 

member of such an ensemble.) Accordingly, the source term Q can be split into its Hubble part 

and deviations thereof and transformed into surface integrals over the boundary        

(Rosanen. S, 2006) 
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Averaging and Schemes 

The idea that the large scale universe is homogeneous and isotropic necessarily entails an 

implicit notion of averaging on these large scales. If   denotes the metric,   the Christoffel 

connection and E[  ] the Einstein tensor for the metric  , the one has the relations                                

                       ,              (17) 

with   denoting spacetime derivatives. The Einstein equations are therefore 

             ,                (18) 

with T denoting the energy-momentum tensor of the matter components. Now, irrespective of 

any details of the averaging operation, one notes that 

                                ,                                (19)  

with the angular brackets denoting the averaging. The FLRW solution would amount to solving 

the equations              . In general, therefore it is not true that averaging out the 

fluctuating inhomogeneities leaves being the FLRW solution, since what one is actually left with 

is 

                                                        ,                        (20) 

and the homogeneous solution that we are looking for will depend on the details of the correction 

terms  . The second cause for concern comes from observations. It has now been established 

beyond a reasonable doubt, that the FLRW metric confronted with observations indicates an 

accelerating scale factor. (Witshire. D. L, 2007) 

Buchert’s Spatial Averaging  

The most straightforward and intuitively clear application of Buchert’s spatial averaging 

is in the case when the matter source is a pressure “dust” with an energy-momentum tensor  
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           , with    the dust 4-velocity which satisfies    
    . Assuming further that 

the dust is irrotational, the 4-velocity will be orthogonal to 3-dimensional spatial sections and the 

metric can be written in “synchronous and comoving” coordinates (in which           as 

                                                         
                                                         (21) 

The expansion tensor   
  is given by   

               where the dot refers to a 

derivative with respect to time t. The traceless symmetric shear tensor is defined as                          

  
     

          
   where     

   is the expansion scalar. 

The scalar equations are the Hamiltonian constraint (3.6a) and the evolution equation for 
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where   
   

 is the Ricci scalar of the 3-dimensional hypersurface of constant t and    is the rate 

of shear defined by    (1/2)  
   

    Eqns. (22) and (23) can be combined to give 

Raychaudhuri’s equation 

                   
 

 
              .              (24) 

The continuity equation        which gives the evolution of   , is consistent with 

Eqns. (23) , (24). One only consider the scalar equations, since the spatial average of a scalar 

quantity can be defined in a gauge covariant manner within a given foliation of spacetime. For 

the spacetime described by (24), the spatial average of a scalar         over a comoving domain 

  at time t  is defined by  

                        
 

  
 
 
          ,              (25) 

where h is the determinant of the 3-metric     and    is the volume of the comoving domain 

given by     
 
         . The following commutation relation then holds 

                                            ,                   (26) 

which yields for the expansion scalar   

                       
  .                                    (27) 

Introducing the dimensionless scale factor            
 
     normalized by the volume 

of the domain     at some initial time      , we can average the scalar Einstein equations (22), 

(23) and the continuity equation to obtain  
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Concluding Remarks 

It is concluded that timescaping nature of cosmology can be more smoothly applicable to 

fundamental cosmological entities such as scale factor and density parameters and extendable to 

different time evolution settings. Some interesting visualization of the results are implemented 

using Mathematica software. 
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