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INVESTIGATIO NO NPOLARIZATION OF LIGHT IN THE PRESENCE 
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Abstract 

Degree of polarization of scattered line radiation in the presence of the magnetic field was 
investigated. The Stokes parameters of the scattered radiation incident on an arbitrary polarized 
atom in any given arbitrary direction were calculated. It was considered that the polarization of 
scattered line radiation from an upper atomic level with angular momentum Ju = 3/2 to a lower 
atomic level with angular momentum J = 1/2 transition. This line has transition of both type 
electric dipole transition and magnetic quadrupole transition. Only the electric dipole transition 
was considered for upper and lower atomic levels having different parities. The degree of linear 
polarization of scattered radiation in the presence of weak external magnetic field was calculated. 
In this calculation, the lower level polarization was neglected. The obtained results were compared 
with experimental results as well as theoretical results. It was found that the obtained results agree 
well with these results.  

Keywords: Stokes parameters, polarization, scattered radiation, electric dipole, weak external 
magnetic field 

Introduction 

Level-crossing spectroscopy is a technique which exploits the interference phenomena 
that can occur in resonance fluorescence when two or more energy levels are nearly degenerate. 
So far it has been applied exclusively to resonance light scattering from atomic systems. When an 
atom is placed in the presence of magnetic field, the energy level of an atom is splited into 
several magnetic sublevels called Zeeman levels. If the strength of the magnetic field is strong, 
the Zeeman levels of an excited atomic state are distinct (i.e., separated by several natural line 
widths), their contribution to the atomic resonance fluorescence may be treated independently by 
summing over the each excited Zeeman level. When a magnetic field is applied along an 
arbitrary direction to this excited state, the degeneracy between the magnetic sublevels is 
removed. The coherence, in general, is partially destroyed and the resonance fluorescence is 
depolarized.  

Polarization that is produced by coherent scattering modified by a weak magnetic field is 
known as the Hanle effect. Moreover, measuring the amount of polarization nature of the 
scattered radiation, we can predict the magnetic field strengths and its orientations. The Hanle 
effect is usually used to determine weak magnetic fields in the solar atmosphere.  

Polarization is an important property of electromagnetic waves. In communications, 
completely polarized waves are used. The complete polarization types of electromagnetic waves 
are linear polarization, circular polarization and elliptical polarization. Electromagnetic waves 
from of ratio astronomical sources may possess random polarization (also known as un-polarized 
waves), partial polarization (completely polarized and un-polarized). 
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Polarization of Atom and Radiation 

Polarized Radiation 

 Polarization is a property of waves that describes the orientation of their oscillation. By 
convention, the polarization of light is described by specifying the direction of the wave’s 
electric field. For transverse waves such as electromagnetic waves, it describes the orientation of 
the oscillations in the plane perpendicular to the wave's direction of travel. In this case, the 
electric field may be oriented in a single direction (linear polarization) or it may rotate as the 
wave travels (circular or elliptical polarization). 

According to Maxwell’s equations, the electric and magnetic field be perpendicular to the 

direction of propagation and to each other. In general, the electric field vector Eሬሬ⃗  can always be 
resolved into two perpendicular components. 

If the light is linearly polarized, then the two perpendicular components with equal 
amplitude oscillate in phase. 

Elliptically polarized light consists of two perpendicular components of unequal 
amplitude which differ in phase by 90 degree. 

Circularly polarized light is a special case of elliptically polarized light in which the two 
components have same amplitude and a 90 degree phase difference. For circularly polarized light 
the orientation of the electric field rotates around the direction of travel. While looking at source, 
the electric vector of the light coming toward you appears to be rotating counterclockwise, the 
light is said to be right-circularly polarized. If clockwise, the light is said to be left circularly 
polarized light. 

For unpolarized light, the electric field vector vibrates in all directions perpendicular to 
the direction of propagation.  
 

Radiation Density Matrix 

When the average properties of an ensemble of identical non-interacting systems are of 
interest, and information on the individual members of the ensemble is not needed, it is useful to 
introduce the concept of the density matrix. It's a matrix which describes the state of ensemble. 
Consider first a system in a state | . The state |  can be written in terms of complete 

orthogonal set of basis states as 

   
n

nn u|C|       (1) 

   
n

nnnn u|uC|u   

  ...u|uCu|uCu|uC nnnnnnnnn     

 )nn(          C|u nn     

    |uC nn   

|  is normalized, 
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    |u u|| n
n

n   

    |u u|| n
n

n   

  1|C||
n

2
n         (2) 

An observable, such as momentum and spin components can be represented by an operator, such 
as A, in the vector space in question. Quite generally, an operator outs an a ket from the left, 

   |A)(|A  

If A is an observable, with matrix elements 

  nppn Au|A|u        (3) 

The mean value of A is 

   |A|A  

    pn
p

p
n

*
n u|A|uCCA  

  np
n p

p
*
n ACCA       (4) 

  p
*
nnp CCu|)()(|u      (5) 

    nnnnnn u|C|uu|||uu|  

We see that |uu| nn    selects that portion of the ket |  parallel to nu| . So |uu| nn    is 

known as the projection operator along the base ket nu|  and it denoted by . 

  |uu| nn         (6) 

It is therefore natural to introduce the density operator , defined by 

  ||         (7) 

The density operator is represented in the { nu| } basics by a matrix called the density matrix 

whose elements are  

  p
*
nnppn CCu||u       (8) 

The density operator  derived by 

  ||   

According to equation (8), equation (4)indicates that the sum of the diagonal elements of the 
density matrix is equal to 1. 

  1Tr|C|
n

nn
n

2
n        (9) 
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Trace means the sum of the diagonal terms of matrix element is equal to 1.Now, we can express 
the radiation field with the density matrix from where the rows and columns are labeled by two 
basis polarization states |  and |  as  

  
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
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2
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|C|CC

CC|C|
      (10) 

and the trace of the density matrix is 

    1|C||C|Tr 2
2

2
1

r       (11) 

Using equations (3) and  (8), equation (4) becomes 

  nppn Au|A|u        (12) 

   npp
*
npn u||uCC      (13) 

  
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   
n
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   
p

pp u|A|uA       (17) 

  }A{ TrA        (18) 

 

Polarization Matrix and Stokes Parameters 

 The two dimensional Hermitian matrix can be expressed as a linear combination of the 
unit matrix and Pauli’s matrices. So the radiation density matrix can generally be written as 

 ργ =
ଵ

ଶ
(1 + σሬ⃗ . Sሬ⃗ ) , (19) 

where σሬ⃗  is the vector of which the components are the Pauli’s matrices σ୶,σ୷and σ୸.Sሬ⃗  is a 

polarization vector of the radiation. 

 Sሬ⃗ = S୶xො + S୷yො + S୸zො 

 σሬ⃗ = σ୶xො + σ୷yො + σ୸zො . 

Therefore ργ =
ଵ

ଶ
(1 + σ୶S୶ + σ୷S୷ + σ୸S୸) , (20) 

where σ୶ = ቂ
0 1
1 0

ቃ σ୷ = ቂ
0 −i
i 0

ቃ σ୸ = ቂ
1 0
0 −1

ቃ 
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 ργ =
ଵ

ଶ
൤

1 + S୸ S୶ − iS୷

S୶ + iS୷ 1 − S୸
൨ , (21) 

and the trace of the density matrix is given by 

 Trργ =
ଵ

ଶ
(1 + S୸ + 1 − S୸) = 1 .  (22) 

 Comparing equation (22) with equation (11), the polarization state of the radiation can be 
given as follow 

The total intensity I is 

 I = Trργ = ቀρ
ା,ା

+ ρ
ି,ି

ቁ . (23) 

According to the equation (11) the linear polarization is  

 Q = S୶ = Tr(ργσ୶) = ቀρ
ା,ି

+ ρ
ି,ା

ቁ , (24) 

the plane polarization  

 U = S୷ = Tr(ργσ୷) = i ቀρ
ା,ି

− ρ
ି,ା

ቁ , (25) 

and the circular polarization  

 V = S୸ = Tr(ργσ୸) = ቀρ
ା,ା

− ρ
ି,ି

ቁ , (26) 

where I, Q, U, V are well-known four Stokes parameters. 

 

Scattering Matrix 

If density matrix )k(   describes the state of polarization of the incident radiation, the 

density matrix )k(  representing the state of polarization of the scattered radiation is given by 

   T)k(T)k( ,      (27) 

where T matrix is defined in terms of its elements. 

If stokes vectors )k(S   characterizing the state of polarization of the scattered radiation is  

  )k(SM)k(S  ,      (28) 

where, M is the 4 × 4 matrix and is called scattering matrix. 

Using the general form of density matrix   

  



3

0p
ppS2

1
,       (29) 
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in equation (27) and comparing with equation (28), we obtain scattering matrix elements 

  )TT(Tr
2

1
M pppp  

  ,     (30) 

where the matrices p  are explicitly given by 
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By using the equation (30), the scattering matrix elements in terms of the polarization states 
1  is obtained. These scattering matrix elements are shown below: 
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Results and Conclusion 

Transition Amplitude for 
2

1
J

2

3
J

2

1
J fni   

We consider the scattering of polarized radiation by an atom which makes a transition from an 
initial state  i|  with energy iE , total angular momentum iJ  and parity i  to a final state f|  

with energy fE , total angular momentum fJ  and parity f . The left and right circular 

polarization states of incident and scattered radiations are denoted by 1 . 

The transition matrix element for scattering of polarized radiation, 

  
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basis states |  are the total angular momentum jm|  basis states for atomic scattering process. 

Equation (32) becomes 
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where i  contains the initial polarization of both atom and radiation. We assume that there is no 

entanglement between initial states of atom and radiation. It means we can write iAiri  . 

The matrix elements for scattered radiation with polarization f  along the direction (, ), 
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The fn ,  are parities of the intermediate state and final state.  nLf J||E||J
e
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the reduced matrix element, )m,M,m;J,L,J(C nefnef  is the Clebsch-Gordon coefficient and 
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L
,M   is the Winger's D-functions. 



364               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2A 

The reduced matrix element  nLf J||E||J
e

 for emission represents either an electric or a 

magnetic L2  pole strength depending on whether h (L) is equal to one or zero. 

The matrix element for incident radiation with polarization i  along the direction ),(   is also 

given by 
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Similarly, the matrix element for incident radiation with polarization i  is given by  
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and the matrix element for scattered with polarization f  is given by 
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Therefore, equation (33) becomes 
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Since no observation are made on the state of polarization of the atom in the individual 
final state, the polarization states of the scattered radiation may be defined through a density 
matrix f  as    

 ρμfμf′
ୀ

f ∑ ρmfmf′
;μfμf′

f
mf  

ρஜ౜ஜ
౜′ୀ

୤ ρ୧36(π)2 ฬ〈
1
2

∥  E1 ∥  3
2

〉ฬ
2

ฬ〈
3
2

∥  A1 ∥  1
2

〉ฬ
2

FmnFmn΄
∗ 

෍ ෍ ෍ ෍ ෍ C ൬
1
2

, 1,
3
2

; mf, Me, mn൰

1

Meୀି1

3
2

mnୀି
3
2

1

μiୀି1

1
2

miୀି
1
2

1
2

mfୀି
1
2

μfDMe,μf
1 (ϕ, θ, 0)∗ 

෍ C ൬
1
2

, 1,
3
2

; mi, Ma, mn൰

1

Maୀି1

μiDMa,μi
1 ൫ϕ′, θ′, 0൯ 

෍ ෍ ෍ ෍ C ൬
1
2

, 1,
3
2

; mi′ , Ma′ , mn′൰

1

Ma′ୀି1

1

μ
i′
 ୀି1

3
2

mn′సష
3
2

1
2

m
i′

ୀି
1
2

μi′DMa′,μi′
1 ൫ϕ′, θ′, 0൯

∗
 

  ∑ C ቀ
1

2
, 1,

3

2
; mf, Me′ , mn′ቁ1

Me′ୀି1 μf′DMe′,μf′
1 (ϕ, θ, 0)   (39) 

 

 The characteristics of the incident radiation(ϕ′, θ′) and scatteredradiation(ϕ, θ)are shown  
in figure (1). We calculate the degree of linear polarization of scattered radiation in the absence 
of an external magnetic field to check our theoretical calculations and algorithm of our numerical 
program. We first calculate the degree of linear polarization of scattered radiation in the weak 
magnetic field when the incident radiation is linearly polarized for some chosen angles. These 
results are shown in Table (1). For unpolarized case, the incident radiation is 100% linearly 
polarized and its direction is taken as  = 90º,  = 0º. The scattered radiation is assumed to be           
 = 90º,  = 90º. The incident radiation is  = 30º,  = 0º and the scattered radiation is  = 70º,         
 = 30º.These results are presented in Table (2).The comparison of the degree of linear 
polarization of the scattered radiation is shown in Table (3).  
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Figure 1  Angular characteristics of the incident (ϕ′, θ′) and scattered (ϕ, θ) radiation. 
 

Table 1 The result of polarization when the incident radiation is linearly polarized for some 
chosen angles. 

Type of Incident 
Radiation 

Incident 
Angles 

Scattered 
Angles 

Linear Polarization of 
Scattered Radiation 

(percent)  
(Calculated Results)         

Linearly polarized 

20º 0º 50º 20º 56 
30º 0º 70º 30º 35.85 
40º 0º 60º 30º 52 
60º 20º 80º 30º 55 
90º 0º 90º 90º 60 
100º 30º 80º 30º 65 

 

Table 2 The result of polarization when the incident radiation is unpolarized for some 
chosen angles. 

Type of Incident 
Radiation 

Incident 
Angles 

Scattered 
Angles 

Linear Polarization of 
Scattered Radiation 

(percent)         

Unpolarized 
90º 0º 90º 90º 43 
30º 0º 70º 30º 13 

Table 3 Linear Polarization (percent) of 
2

1

2

3

2

1
J    scattered radiation for ' = 90º, 

' = 0º,  = 90º,  = 90º and ' = 30º, ' = 0º, = 70º,  = 30º 

Calculated result 
(percent) 

Theoretical result (percent) 
Experimental result 

(percent) 
60 60 60 

35.85 35.53 36 
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Conclusion 

We have computed the polarization of scattered line radiation from the upper level with 

angular momentum 
2

3
uJ  to a lower level with angular momentum 

2

1
J  transition in the 

absence of magnetic fields. The Stokes parameters of the incident radiation were taken to be 
unpolarized and there is no lower level polarization of an atom. We calculate the simplet 
geometrical arrangement of scattering in which the incident radiation is 100% linearly polarized 
and its direction is taken as  = 90º,  = 0º. The scattered radiation is assumed to be  = 90º,          
 = 90º.For unpolarized case incident radiation is  = 30º,  = 0º and the scattered radiation is         
 = 70º,  = 30º.We particularly choose this set of parameters to compare our calculated result 
with well-established theoretical result as well as experimental result. The comparison of the 
degree of linear polarization of the scattered radiation is given in Table (3). In this case we obtain 
the good agreement with theoretical results as well as experimental results.
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