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Abstract 

In this paper, both the neutron and proton single-particle energy levels of A=51 mirror nuclei, 
51

Fe 

and 
51

Mn have been investigated by solving non-relativistic Schrödinger equation within the 

framework of Numerov method. In this calculation, phenomenological Woods-Saxon potential 

with spin-orbit interaction has been applied. Coulomb interaction is also taken into account for 

proton single-particle model approach. We also found that proton single-particle energy levels are 

higher than the neutron single-particle energy levels due to the effect of Coulomb repulsion. 

Moreover, there is some energy discrepancy between 
51

Fe and 
51

Mn mirror nuclei for proton 

single-particle model. This is due to the fact that the number of protons and neutrons are 

interchanged in the mirror nuclei. Moreover, the total root-mean-square radii of these mirror nuclei 

have also been investigated and the calculated values are found to be 3.57 fm for 
51

Fe and 3.56 fm 

for 
51

Mn respectively. We also observed the peculiar behavior in the relation between the binding 

energies and root-mean-square radii. Furthermore, the one nucleon and two nucleons separation 

energies have been investigated. 
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Introduction 

 Investigation of the structure and energy levels of nuclei is the basic understanding of 

nuclear properties and nucleon-nucleon interaction. Thus, many nuclear models such as Fermi 

gas model, liquid drop model, single-particle shell model and cluster model have been introduced 

to develop the better understanding of the nuclear properties. Among nuclear models, single-

particle shell model is one of the most fruitful model in order to probe the nuclear properties 

(Bakhshabadi, F. and S. Mohammadi,, (2015), Giv, B.N. and S. Mohammadi, (2017)). 

Nowadays, the study of mirror nuclei (Machleidt, R. and H. Muther, (2001)) is an interesting 

issue to understand the charge symmetry breaking effect. The mirror nuclei have the same 

nucleon numbers and therefore they should have identical nuclear interaction due to properties of 

nuclear force. But the symmetry is being mainly broken due to spin orientation and the effect of 

Coulomb interaction. The study of this symmetry breaking reveals the details of structure of the 

mirror nuclei. In this paper, the nucleon single-particle energy of A=51 mirror nuclei, 
51

Fe and 
51

Mn, was investigated within the shell model approach. 
 

Mathematical Formulation 

(a) Numerov Method for Numerical Calculation 

In this research work, the neutron and proton single-particle energies of A=51 mirror nuclei 

have been studied within the framework of shell model approach. To investigate the nucleon 

single-particle energy level, one-body Schrödinger radial equation will be used. 
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In this equation, k(r) is the kernel of the equation, M is the mass of nucleon single-particle, 

and V(r) is the potential of the single nucleon in the field of remaining core nucleus and u (r) is 

the reduced radial wave function. Equation (1) can be solved by means of Numerov method. In 

this method, the r range (r) is split into N points according to hrr 1nn    where h is the step and 

then the wave function and kernel of the equation can be rewritten as    hruruu 1nnn    

and   )hr(krkk 1nnn   . Then, we can expand  ru  by using Taylor series, 
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By adding equations (2) and (3), we obtain 
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Similarly, the second-order derivative of the wave function can also be written as  
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As the same procedure of equation (2) and (3), the following equation can be obtained. 
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By substituting equation (7) into equation (4) and solving, we get the following equations. 
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 The above two equations are the forward and backward recursive relations in order to find 

the wave function for our consideration system. Therefore, when we calculate the wave function 

by using the forward-backward technique, it is necessary to give two initial values for each 
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direction and the two solutions at the origin and the asymptotic solution at r  are 

   r0ru  and  
2reru  , = constant. The first derivative wave function is 
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Since both  ruout  and  ru in  satisfy in a homogeneous equation, their normalization can 

always be chosen so that they are set to be equal at the cr  point. At the matching point cr the 

eigen functions must all satisfy the continuity conditions as the following. 
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We can define a G(E ) function at cr  whose zeros correspond to the energy eigenvalues as; 
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 Firstly, we give a trial energy “E” as an input at r = 0 and this energy is increased 

according to the equation EEEn   where E  is the energy step within the N points. For 

each nE , their eigen functions outu  and inu
 
can be calculated at the cr  point and build the G(E ) 

function. We carefully looked for and checked a change of sign in the value of  G(E ) function. 

When we find it, we perform a fine tuning closing the energy range until the required tolerance. 

The correct energy eigen value and corresponding eigen function can be obtained simultaneously 

if the value of G(E) function is zero or very close to zero.  In this calculation, we choose that the 

matching point is N/3. 
 

(b) Derivation of Normalized Wave function 

 The outwards and inwards functions is directly obtained from the recursive formulas as 

)r(uout  and )r(uin  respectively.  

The physical eigen functions )r(uout  and )r(uin  can be rewritten as 

 )r(A)r(uout  , )r(IB)r(uin                                    (13) 

where A and B are constant. Their respective derivatives are  
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                             (14) 

By substituting equation (13) and (14) in equation (11) respectively, we obtain as 
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and performing the difference of the above equations, we get BfB
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, where           

cf = scaling factor. Therefore, the above equation is the relation between the constant A and B. 

We have already got outwards ( ) and inwards functions (I) from the recursive formulas. After 
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obtaining their derivatives, we can find the value of constant A. The value of constant B can be 

acquired after getting the value of A. Therefore, equation (14) can be rewritten as 

)r(Bf)r(u cout  , )r(IB)r(u in  , and B is the global factor that must be taken into account in 

the normalization process. Moreover, normalized constant “B” can be obtained by using the 

normalization conditions:       1drrudrrudrru
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eigen functions becomes, )r(f
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1
)r(u cout   from r = 0 fm to cr  point and 

)r(I
N

1
)r(u in   from r = rc fm to Nr  point. The above wave functions are the normalized 

forward and backward wave functions in order to investigate the properties of nucleon single-

particle states. 

Potential for Nucleon Single-particle 

In order to calculate nucleon single-particle energy levels, we considered that the nucleon 

moves freely in an average potential well generated by the other nucleons. The 

phenomenological Woods-Saxon central potential including spin-orbit interaction (Min, A.A. et 

al., (2014)) was applied in this calculation. Therefore, Woods-Saxon potential including spin-

orbit term for 
2

1
j    state and 

2

1
j    state are: 
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The above two potentials can be used in order to calculate nucleon single- particle energy 

levels for each orbital angular momentum states of our consideration system. The value of V0, 

Vso and a are described in reference. It is also necessary to consider the Coulomb potential for the 

proton single-particle state. Since the core nuclei are not the point charged particles, the finite 

size Coulomb potential will, therefore, be used. Coulomb potential can be divided into three 

regions (i) the potential at a point outside the nucleus (r > R), (ii) the potential at on the surface of 

the nucleus (r   R) and (iii) the potential inside the nucleus       (r < R). By applying Gauss’s 

theorem, we can derive Coulomb’s potential for each region as  
r

1
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where Z1 and Z2 are charge of the single proton and core nucleus,  is the fine structure constant. 
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Calculation of Root-mean-square Radii and Nucleon Separation Energies 

 After getting the normalized wave function, we can calculate the root-mean-square radii 

of mirror nuclei, 
51

Fe and 
51

Mn.  The root-mean-square radius of the nucleon single-particle in 

each state can be obtained as    rurrur 22  . In this equation, u(r) is the wave function of 

the corresponding states. The total

 

root-mean-square radii of A=51 mirror nuclei (Rmst) can be 

deduced by using the following equation as 



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i

i2 1j2x . The one-neutron and one-proton separation energies can be expressed as 

   1N,ZBN,ZBSn   and    N,1ZBN,ZBSp  . 

 Based on the above equations, two-neutron separation energy and two-proton separation 

energy are    2N,ZBN,ZBS n2   and    N,2ZBN,ZBS p2  . By using the above 

equations, one nucleon and two nucleon separation energies can be calculated. 
 

Results and Discussions 

 In this paper, the nucleon single-particle energy levels of A=51 mirror nuclei, 
51

Fe and 
51

Mn, have been investigated by using Woods-Saxon potential with spin-orbit interaction. In this 

calculation, Numerov method has been applied. The accuracy of this method has already checked 

by using harmonic oscillator potential model for 
12

C. The calculated numerical results are in 

good agreement with the analytical results. As a first step, the single-nucleon potentials have 

been analyzed. Fig. 1 (a) is the total potential of nucleon single-particle having the various spin-

orbit coupling states in the nuclear medium. We found that the interaction range is about 8.0 fm 

for Woods-Saxon prescription. Moreover, the nucleon single particle field strongly depends upon 

the spin-orbit coupling. Therefore, the spin-orbit interaction for various orbital angular momenta 

have been plotted in order to recognize the behavior of this interaction and it is shown in Fig. 1 

(b). From our graph, we can clearly see that the spin orbit potential for the Jackknife case gives 

the attractive interaction while that of the stretched spin case provides the repulsive interaction. 

In addition, there is no attractive or repulsive interaction in the nuclear interior but the spin-orbit 

potential is peaked near the nuclear surface.  

 

Figure 1 (a) Nucleon single-particle potential in the nuclear medium and (b) spin-orbit 

interaction for each state 

The systematic energy level diagrams for neutron and proton single-particle energy levels 

in A= 51 mirror nuclei, 
51

Fe and 
51

Mn, are also displayed in Fig. 2 (a) and (b) respectively.  

(a) (b) 
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(a)                                                                (b) 

Figure 2 Single-particle energy level (a) in 
51

 Fe (b) 
51

Mn 

 The neutron single-particle energy levels are the same for A= 51 mirror nuclei. However, 

proton single-particle energy levels are higher than the neutron single-particle energy levels due 

to the effect of Coulomb repulsive interaction between proton and core nuclei. Moreover, we can 

also see that proton single-particle energy levels have some energy discrepancy between 
51

Fe and 
51

Mn mirror nuclei. This is due to the fact that the number of protons and neutrons are 

interchanged in the mirror nuclei. In order to understand the difference in energy level 

qualitatively, we plotted it which is also called the Coulomb energy difference in 
51

Fe and 
51

Mn 

mirror nuclei. Fig. 3 (a) and (b) show the energy difference between neutron and proton single-

particle model and the Coulomb energy difference in the mass number A= 51 mirror nuclei. 

  

Figure 3 (a) Energy difference between neutron and proton single-particle model (b) Coulomb 

energy difference in A= 51 mirror nuclei. 

The root-mean-square radii of A=51 mirror nuclei have also investigated for various 

nucleon single-particle states and the results are expressed in Tables (1) and (2).  
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Table 1 Neutron single-particle energy levels of A=51 mirror nuclei 

      

According to our calculated results, the root-mean-square radii gradually increased with 

decreasing energy values within the frame work of Woods-Saxon interaction and this interaction 

including Coulomb interaction. But, when the spin-orbit interaction is switched on, we observed 

the peculiar behavior in the relation between the binding energies and root-mean-square radii. In 

order to understand this strange behavior clearly, the potential and the corresponding wave 

function for 
51

Fe have been plotted for various states.  

These plotted figures is described in Fig 4. (a) and (b). The attractive interaction strength 

which possesses the total spin sJ   is stronger than that having sJ  . The stronger 

interaction strength gives the greater binding energy. Moreover, the spin-orbit attractive potential 

works near the nuclear surface.  

Table (2) Proton single-particle energy levels of 
51

Fe and 
51

Mn  
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Furthermore, single-nucleon wave functions for J=   + s are more shifted to the outer 

region than that having spin state sJ   and that is why the root-mean-square radius of nuclei 

for each spin state is larger although the binding energy is large. These effects could explain why 

both the rms value and binding energy are large. The total root-mean-square radius of A=51 

mirror nuclei have been investigated. The calculated results are 3.57 fm for 
51

Fe and 3.56 fm 

respectively. 

              

Figure 4 (a) Neutron and (b) proton single-particle wave functions and potentials for 1d state in 
51

Fe 

Moreover, we have calculated one nucleon separation energies and two nucleon separation 

energies for A=51 mirror nuclei by using the binding energies data (Audi, G. et al., (2012)) and 

the results are shown in Table (3). According to our results, although mass numbers are the same 

for the mirror nuclei, the nucleon separation energies are not the same. We found that the proton 

separation energies for 
51

Fe are smaller than that for 
51

Mn but the neutron separation energies are 

conflict with the proton separation energies.   

Table 3 Nucleon separation energies for 
51

Fe and 
51

Mn  

    

For the neutron separation energy case, the difference energy values between 
51

Fe and 
51

Mn are 0.14 MeV and 4.90 MeV respectively for one-neutron and two-neutron separation 

energies. For proton separation energy case, the differences for one-proton and two-proton 

separation energies are found to be -0.36 MeV and -5.16 MeV correspondingly.  
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Conclusion 

In this research work, nucleon single-particle energy levels of A=51 mirror nuclei, namely 
51

Fe and 
51

Mn have been investigated by solving one-body Schrödinger equation with the use of 

phenomenological Woods-Saxon central potential including spin-orbit interaction. According to 

our results, the calculated shell structure of neutron single particle are the same for A= 51 mirror 

nuclei but that of proton single particle have some discrepancy. This shell structure and some 

energy difference in proton single-particle energy levels of 
51

Fe and 
51

Mn mirror nuclei comes 

from the different number of protons in the mirror nuclei although the mass numbers are the 

same. In order to understand the difference in energy level, the Coulomb energy differences have 

been investigated qualitatively. We can conclude that the larger the value of the orbital angular 

momentum, the smaller Coulomb energy difference is. For the same orbital angular momenta 

case, the Coulomb energy difference for stretched spin state is greater than that for jackknife 

state. In addition, nucleon separation energies have been investigated. This present work is not 

only to understand the nuclear shell structure but also to recognize how to apply the simple and 

good numerical Numerov’s method. 

 

Acknowledgements 

The authors would like to thank Dr Soe Lin Aung, Rector, University of Computer Studies (Magway), for his 

encouragement and to acknowledge Professor Dr. Y. Akaishi, KEK, Japan, for his valuable advice. 

 

References 

Bakhshabadi, F. and S. Mohammadi, (2015) “Calculation of the Energy Levels of Phosphorus Isotopes (A=31 to 35) 

by Using OXBASH Code.” Americ. J. Mod. Phys. 4(3-1), pp.15-22. 

Giv, B.N. and S. Mohammadi, (2017) “Calculating Energy Levels in 
49

Mn/
49

Cr Mirror Nuclei with OXBASH 

Code.” SciencePG 5(5), pp.70-73. 

Machleidt, R. and H. Muther, (2001) “Charge symmetry breaking of the nucleon-nucleon interaction: ρ-ω mixing 

versus nucleon mass splitting.” Phys. Rev. C 63 034005, pp.1-10. 

Min, A.A. et al., (2014) “Single-particle Energy Levels of 
34

Si, 
35

P and 
36

S.” Univ. Res. J. 7(4), pp.25-36. 

 


