
J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2A 

STUDY ON THE DIFFERENTIAL SCATTERING CROSS SECTION FOR 
NEUTRON-CARBON (n-12C) NUCLEUS WITH EIKONAL 

APPROXIMATION  

Hla Myat Thandar1 and  Khin Swe Myint2 

Abstract 

The purpose of this work is to predict the differential cross sections of neutron-carbon (n-12C) 
nucleus in the frame work of Eikonal approximation. The differential cross sections of neutron-
carbon nucleus are calculated by using Wood-Saxon potential. The projectile neutron kinetic 
energy ranged from 65 MeV to 95 MeV by increasing 10 MeV while the scattering angle varied 0° 
to 30°. The calculated results are in good agreement with the experimental results for energies,        
65 MeV and 75 MeV. They are quite different for 85 MeV and 95 MeV.  
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Introduction 

Scattering theory is a framework for studying and understanding the scattering of waves 
and particles. Understanding the nucleon-nucleus interaction has been one of the long term goals 
of nuclear physics.  The nature of forces between particles can be studied from the scattering 
experiments. The interaction between two nucleons is basis for all of the nuclear physics. 
Approximations play a very important role in the understanding of processes that cannot be 
solved exactly. The Born approximation in quantum mechanics is an example of an 
approximation that has been extensively used for studying low energy processes. 

There have been many measurements of proton-nucleus scattering, but few of neutron 
scattering at 65 MeV to 95 MeV energies. Those of Hjort et al. 65 MeV (Hjort E.L. et al., 
(1994)), Salmon at 96 MeV (Salmon G.L., (1960)), and from the Uppsala facility ((Klug J. et al., 
(2002), Klug J. et al., (2003), Klug J. et al., (2003)), also at 96 MeV are the most recent. In the 
1950’s and 1960’s, when high energy physics was ascending towards its peak, it was realized 
among the high energy physicists of that time the Born approximation is not a valid 
approximation for studying processes involving high energies. This period in fact was the golden 
age in the development of the Eikonal approximation. From approximation methods, we can 
obtain differential scattering cross section. 

Differential Cross Section and Electric Form Factors 

 If the colliding particles possess extended structure, the cross section must be modified. It 
must take into account only the spatial distribution of the target particle if the incident particles 
are leptons. For simplicity, we shall assume here that the target particle possesses a spherically 
symmetric density distribution. The cross section for scattering of electrons (Nakano T. et al., 
(1953)) from such a target is of the form.  

                                                 

22

intpo

)q(F
d

d

d

d














                       (1) 

                                                      
1. Dr, Lecturer, Department of Physics, University of Mandalay, Myanmar 
2. Dr, Emeritus Professor, Department of Physics, University of Mandalay, Myanmar 



406               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2A 

The multiplicative factor )q(F 2 is called the Form Factor, and 

   
22 )pp(q   

is the square of the momentum transfer,  p is the momentum of incident particle and p is the 

momentum of scattered particle. 

 Form Factors play an increasingly important role in nuclear physics because they are the 
most convenient link between experimental observation and theoretical analysis. Equation (1) 
expresses the fact that the Form factor is the direct result of a measurement. To discuss the 
theoretical side, consider a system that can be described by a wave function )r( , which in turn 

can be found as the solution of a Schrodinger equation. For an object of charge Q, the charge 

density can be written as Q ),r( where )r( is normalized probability density,   1)r(rd 3 . It is 

well known that the form factor can be written as the Fourier transform of the probability density 

                                               
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The Form Factor at zero momentum transfer, F(0), is usually normalized to be 1 for a charged 
particle; however for a neutral one F(0)=0. The chain linking experimentally observed cross 
section to the theoretical point of departure can thus be sketched as follows: 

                            Experiment  Comparison  Theory 
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Calculation of The Scattering Amplitude by Using Eikonal Approximation 

In theoretical physics, the eikonal approximation is an approximative method useful in 
wave scattering equations which occur in optics, seismology, quantum mechanics, quantum 
electrodynamics, and partial wave expansion. 

The main advantage that the eikonal approximation offers is that the equations reduce to a 
differential equation in a single variable. This reduction into a single variable is the result of the 
straight line approximation or the eikonal approximation which allows us to choose the straight 
line as a special direction (Zamrun M. et al., (2013)). 

At E>> V, the semiclassical path concept becomes applicable and we replace exact wave 

function   by the semiclassical wave function, 

                               
 ~ 𝑒௜ௌ(௫)/ћ                                                                 (1) 

The time independent Schrodinger equation is 
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Where                     
2m

H
2

0


  

Substitute equation (1) into equation (2) and 2 for one dimension,  

Equation (2) becomes 
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From equation (3) 
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Substitute equation (4) into equation (3), Equation (3) becomes 
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Equation (5) for 3 dimension,  
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This leads to the Hamilton-Jacobi equation for S 

By equation (5) for one dimension, 
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By integrating the above equation, 

  





 

1/2

2
2 V(x)dx

2m
kdx

dx

dS(x)1


+constant 

 





 

1/2

2
2 V(x)dx

2m
k

S(x)


constant                                                        (7) 

 

 

 

 



408               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2A 

         -∞                                                                 Zʹ                      +z 

 

                                                                          x    


 

                                                                      

 

 

          Scattering region 

Consider the situation depicted in Fig, where the straight line trajectory is along the z-direction, 
|x|=r and |b|=b is the impact parameter. 

Therefore equation (7) becomes, 
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When   V=0, iS/ikz ee   
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Equation (8) becomes 
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By using power series, 
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The form factor is 
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For cylindrical coordinate 
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By substituting equation (13) into equation (12), 
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The scattering amplitude is 
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Woods-Saxon Potential 

Nuclear potential of the Woods-Saxon form, which is described by the potential depth V0, 
the radius parameter r0 

and the diffuseness parameter a, is widely used in the analyses of nuclear 
collisions. The diffuseness parameter determines the characteristic at the surface region of the 
nuclear potential. 
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(nuclear radius) 
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0
  = 1.25 fm  (the radius parameter) 

             a   = 0.5 fm (the surface diffuseness parameter) 

 

Results and Discussions 

Differential scattering cross sections of neutron-carbon nucleus (n-12C) are calculated by 
using Wood-Saxon potential. In this calculation, the energies of neutron ranged from 65 MeV to 
95 MeV by increasing 10 MeV while the scattering angle varied 0° to 30°. To investigate 
differential scattering cross sections of the n-12C nucleus, Eikonal approximation method is used. 
It is found that the smaller the scattering angle, the larger the differential scattering cross section. 
Moreover, the larger the energy of the neutron, the larger the differential scattering cross section 
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is. The calculated results of d
experimental results for energies, 65 MeV and 75 MeV. But they are quite different with the 
experimental results for 85 MeV and 95 MeV. Moreover, they are slightly different at large 
angles. But the features of the calculated results and the experimental results are similar. They 
are shown in Figure (1) to Figure (5). 
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Figure 5 Comparison between experimental result and our calculated result 
differential scattering cross section  

Figure 4 Comparison between experimental result and our calculated result of               
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