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CALCULATION OF ENERGY LEVELS AND WAVE FUNCTIONS FOR A 
QUANTUM DOT 

Cho Cho Win* 

Abstract 

Quantum dot is a nano-scale particle that is confined to the semiconductor as an exciton. The 
behavior of an exciton in quantum dot has the similar manner as a particle in a box (PIB). It is an 
individual quantum system which can be analyzed by Schroedinger equation. In this paper, 
Numerov technique is also used to solve the Schroedinger equation and the results are compared 
with analytical solutions. 
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Introduction 

Infinite Square Well Potential and Quantum Confinement 

 Basic quantum mechanical problems such as an infinite and a finite square well may 
provide insight into the quantum confinement effect for the study of the nanostructured systems.  

 The quantum confinement means that critical dimensions of the material are on the order 
of the de Broglie wavelength of an electron. The degree of confinement can be controlled by the 
width and depth of the confining potential well as shown in Figure (1).  

 In quantum well, electrons are confined only in one dimension. The quantum wires 
confine electrons in two dimensions. The electron is not confined along the wire. An electron, in 
a quantum dot, is confined in three dimensions. 

 As the confining dimension decreases and reaches a certain limit, typically in nanoscale, 
their energy levels become discrete and their electronic and optical properties deviate 
substantially from those of bulk materials [Buhro, W. E., and V. L. Colvin,(2003)]. The use of 
low dimensional structures has significantly improved the performance of optoelectronic devices 
[Bimberg, D., et al.,(2001) and Alferov, Z. I.,(2001)].   

Quantum Dot 

 Applying some energies to a semiconductor results in the excitation of the electron from 
the valance band to the conduction band leaving a hole behind. It corresponds to the excited 
electron in the conduction band. The excitation gives rise to an electron-hole paircalledexciton 
pairs. The portions of a semiconductor that contains these pairs are calledQuantum Dots as 
shown in Figure(2)[http://en.Wikipedia, org/ wiki/ Quantum dot]. Quantum dots are nano-scale 
semiconductorsthatemit light depending on the size of the dot. The florescence of the quantum 
dots is due to the excitation and recombination of the exciton pairs. Quantum dots are confined to 
a semiconductor in the similar manner as particle in a box thus we use this as a model to study 
different quantum properties of a dot. The quantum dots were discovered at the beginning of the 
1980s by Alexei Ekimov in a glass matrix and by Louis E.Brus in colloidal solutions. The term 
“Quantum Dot” was coined by Mark Reed [Reed, M. A.,    et al.,(1988)]. 
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Figure 1(a) Confinement along 1 dimension. It is analogous to a quantum well.  
 (b) Confinement along 2 dimensions. It is analogous to a quantum wire.      
 (c) Confinement along 3 dimensions. It is analogous to a quantum dot.  

 

 

 

 

 

 

 

 

 
 

Calculation of Energies and Wave Functions for Quantum Dot 

Analytical Solution of Radial Equation 

 The Schroedinger equation is used to describe the quantum states of quantum dot.The 
Schroedinger equation for three dimensions is simply given as follows: 
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  If the potential energy and boundary condition are spherically symmetric then the 
spherical Schroedinger equation can be written as a product of a radial and angular portion as: 

  ),()(),,(  lmnl YrRr         (2) 

 The angular part of the wave function ),( lmY  is the same for all spherically symmetric 

potentials.After some manipulation, the equations for the factors become: 
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Figure 2 Quantum dot 

(1)  Exciton(electron-hole pair) 
(2)  Band gap 
(3) Confinement Energy of the excited electron  
(4) Confinement Energy of the hole 
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where, m2  and )1(   are constants of separation. 

 The solutions to the angular equations with spherically symmetric boundary conditions 

are:  im
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   is the 'associated Legendre function', and )(xP is the th

Legendre polynomial. 

 The product of  and occurs so frequently in quantum mechanics that it is known as a 

spherical harmonic: ),(cos
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 While the angular part of the wavefunction is ),( mY for all spherically symmetric 

situations, the radial part varies.The equation for R can be simplified in form by substituting u(r) 
= rR(r): 
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with normalization   .1
2

udr  

 This is now referred to as the radial wave equation, and would be identical to the one-

dimensional Schroedinger equation were it not for the term 2r  added to V, which pushes the 

particle away from the origin and is therefore often called 'the centrifugal potential.' 

For infinite spherical well, 
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The wavefunction = 0 for r > a; for r < a, the differential equation is ,
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The allowed energies for 0  are given as 
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The first three 00n can be given as shown in figure (3).  

 

 

 

 

 

 

 

 n = 1,   = 0       n = 2,   = 0                n = 3,   = 0 

Figure 3 The first three wave functions 

 The 'stationary' eigenfunctions of this potential are all bound states, confined to the region 
.ar  The solutions to this equation are Bessel functions, specifically the spherical Bessel and 

spherical Neumann functions of order :  
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 The requirement that the wavefunctions be 'regular' at the origin eliminates the Neumann 
function from any region including the origin. The Bessel function is similarly eliminated from 
any region including .  

For small values if x, the functions can be given as: 
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The first four Bessel functions are shown in figure (4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The remaining constants, k (substituting for E) and A, are satisfied by requiring that the 

solution vanishes at r = a and normalizing, respectively: ,0)(  nkakaj  where n is the 

nth zero of the th  spherical Bessel function. 

 Adding the angular portion, the complete time-independent wavefunctions are 
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Figure  4 Graphs of first four Bessel functions 

0  

1  

2

3  

2 4 
14 x 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0 

-0.1 

-0.2 

-0.3 

Y 



420               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2A 

The first few values of n are given in Table (1) [Atnafe, N., and P.Ohmann,( 2012)].They both 

increase with increasing n and  . 
 

Numerical Solution of Radial Equation 

 There are only few cases for which the Schroedinger equation can be solved analytically. 
In most cases, such equations are solved numerically[Atnafe, N., and P. Ohmann,(2012)]. 

 For :0 since the r2 disappears for this case, the radial equation reduces to ODE that can 

be solved easily. For numerical simulation, we should be able to convert the equation into other 
forms. We can write the second order differential equation as a difference of two close points by 
the two point approximation method. This method allows us to calculate the derivatives with 
smaller errors. 

It can be given as: 
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 We can find some of the eigenvalues. This eigenvalues match the analytical ones as 
shown in Table (2). 

 For :0  In numerical physics the Numerov’smethod is used to find solutions of the 
radial Schroedinger Equation for arbitrary potentials. 
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The above equation can be rewritten in the form 
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with u(r) = rR(r). 

Table 1The first few values of  n  for n = 1 to 4 
 

 

 

 

 

 

  n = 1 n = 2 n = 3 n = 4 
0  3.142 6.283 9.425 12.566 
1  4.493 7.725 10.904 14.066 
2  5.763 9.095 12.323 15.515 
3  6.988 10.417 13.698 16.924 
4  8.183 11.705 15.040 18.301 
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Table 2 Analytical and numerical energyvalues for n = 1 to 5  
 
 

 

 

 

 If we compare this equation with the defining equation of the Numerov method, we see 
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and thus can numerically solve the radial Schroedinger equation.Starting from the Taylor 
expansion for u(rn) we get the two sampling points adjacent to rn. 
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The sum of those two equations gives 
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 This equation can be solved for nu  and replace it by the expression nnn ufu   which we 

get from the defining differential equation. 
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 The second derivative of our defining differential equation is taken and we get 
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 The second derivative 
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is replaced with the second order difference quotient and is 

inserted into our equation for fnun 
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We solve for un+1 to get  
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n Analytical values(eV) Numerical values(eV) 
1 0.3765 0.3667 
2 1.5060 1.4665 
3 3.3886 3.2989 
4 6.0241 5.8633 
5 9.4127 9.1585 
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This yields Numerov’s method if one ignore the term of order h6. 

 For this case, it can start at one end of our infinite spherical wall with u(r0)=0 and 
u(r0+h)=1. The wave function R(r) is used instead of U(r). It can be clearly seen that the 
Numerov’s method can be used to solve the radial equation for any value of  . 

 Figure (5) is the graph of the analytical solutions for 0 . The dots each represent points 

from theNumerov’s formula. We can also use Numerov’s method to solve the radial equation for 
the 0 case. Figures (6) to (8) are the graphs of the analytical and numerical solutions for 

.32,1 and  

 

       Figure  6 Wave function for l = 1 

  

  Figure 7Wave function for l = 2     Figure 8 Wave function for l = 3 
 

Conclusion 

 A quantum dot is a semiconductor whose excitons are confined in all three spatial 
dimensions. Researchers have studied quantum dots in transistors, solar cells, LEDs, and diode 
lasers. They have also investigated quantum dots as agents for medical imaging and hope to use 
them as qubits. 

 From quantum theory, we know that quantum dot has similar manner as particle in a box. 
We can imagine the walls of the box with infinite large potential energy thus preventing the 
particle from escaping while the potential inside to be zero. The behavior of electrons in quantum 

Figure 5 Wave function for l = 0 
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dots is dominated by quantum mechanical behavior. In particular, this behavior is determined by 
the electron wave function and its evolution as determined by the Schroedinger equation. 

 The graphs in the figures (5) to (8) show that the analytical and numerical values of 
electron wave function with position  match  for  most  cases such  as =0, 1, 2, and 3. This 
means that the Numerov’s method also shows promising results for solving the radial equation 
for any value of  . 

 As future work, we would like to explore the properties of quantum dots such as energy 
and electronic structures using the particle in a box model.    
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