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Abstract 

The purpose of this research is to investigate the structure of -mesic oxygen nucleus theoretically 

which is a bound system of -meson and Oxygen core nucleus. Since original functional form of 

η-N interaction cannot be analytically solved, we have transformed the functional form into 

Gaussian form by applying the Gauss elimination method. The transformed η-N potentials are 

equivalent to that of original potential by using the optimum sets, fm 20μ,fm0.05μ N1   and 

N=20. The η-nucleus interaction is obtained by folding the η-N interaction with Oxygen nucleus 

nuclear density. By applying the η-nucleus folding potential we have computed the binding energy 

of O16

η
system which is 3.2814 MeV and its level width is 0.3704 MeV. 

Keywords:, Gauss elimination method, folding potential, Power Inverse Iteration Method, 

resonance energy 

Introduction 

The existence of η-mesic nucleus was first predicted by Q. Haider and L.C. Liu in 1986. 

It is a consequence of the attractive interaction between the η meson and all the nucleons in the 

nucleus. The attractive nature of the interaction follows from the work of R.S. Bhalerao and L.C. 

Liu who found, from a detailed coupled-channel analysis of πN → πN, πN → ππN, and πN →ηN 

reactions, that near-threshold ηN interaction is attractive. The reaction mechanisms used for eta 

production are usually based on models similar to those used for other mesons such as the pions 

and kaons. 

Since its discovery, extensive theoretical and experimental efforts have been devoted 

towards achieving a better understanding of the  -meson properties and its interaction with 

other particles. This was due to the special role played by the  -meson in particle physics. The 

latter can be attributed to quantum mixing of the quark states corresponding to the and
0

mesons. 

Although the  -meson is four times heavier, it is in many respects similar to the 
0 -

meson. Both are neutral, spinless and have almost the same lifetime, ~
1810

s. The kindship 

between the two mesons manifests itself very clearly in their decay modes. They are the only 

mesons that have a high probability of pure radiative decay. The pion almost entirely (98.798%) 

decays into the radiative channel 0 . For theη the purely radiativedecay is also the most 

probable mode, 
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Therefore, when π
0
 and η are viewed as elementary particles, they look quite similar. However 

their interaction with nucleons is different. The experimental searches involve the production of 

η mesons and hence signals for the existence of eta-mesic states via their possible decay modes 

and final state interactions of eta mesons with nuclei.  

Resonances 

The first resonance in particle physics was discovered by H. Anderson, E. Fermi, E. A. 

Long, and D. E. Nagle, working at the Chicago Cyclotron in 1952. Resonance states are formed 

when quantum particles collide at certain (resonant) energies. Before moving apart, they stay 

together for a while. During the resonance lifetime, the particles move around each other and 

“forget” the direction from which they came. Therefore, when the resonance eventually decays, 

the particles “choose” the direction to move away at random. 

A resonance can be viewed and approached from two different angles, as a delay 

connected with an enhanced phased shift in a scattering process or as a long-lived but decaying 

state of a compound system. The main observable characteristics of a resonance are position and 

the width. The real and imaginary parts of the energy give the position and width of the 

resonance, respectively. 

A resonance energy is   
2

Γ
iEE rres 

  
has a negative imaginary part , which is called 

resonance width. The use of  a complex energy allows a classification of the energy levels of a 

quantum system.  

Two-Body Calculation 

We use the Gaussian basis wave function as the total wave function of our two-body 

system which has the following form; 
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where cj’s expansion coefficient and bj’s are range parameters. 

The Schrödinger equation is written as 

Ψ ΕΨ Η    (2)  

The two body Hamiltonian is 
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where reduce mass ,      
21
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mm
μ
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And then we can write as; 
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 (3) 
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Eq.(4) can be written as
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The above N equations can be written as a matrix form as follows; 
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    C ECΑ 

 (8)  

  

ij
N ,

ijT , ijV  are analytically solved by using standard integral. We solved the two body 

Schrödinger equation to obtain the resonance energies. By diagonalization the Hamiltonian 

matrix elements, we obtained the complex energy eigenvalues. 

Eta-Nucleon Interaction 

 In our calculation, we use the potential between η and nucleon which is the following 

functional form, 

    2

33

2

22

2

111ηN rbexp(ai)rbexp(a)r)(rbexp(a(r)V  )                     (9) 

with parameters a’s, b
’
s and r1 from “MSc Thesis” ( J.S. De Villiers, 2005). The value of their 

parameters are described in Table (1) and shown in Fig. (1) and Fig(2).  
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Table 1  Parameters of the η-N potential  

Parameter Value 

r1 1.95616478619031975fm 

a1 57.5826586837329657MeV 

a2 26.8157044304329091MeV 

a3 0.603932024464326478MeV 

b1 0.0715471865601824408fm
-2

 

b2 0.0271505486074286040 fm
-2

 

b3 0.0338015704618582769 fm
-2

 

 

                      

 

 
 

Transformation of Functional form to Gaussian Form 

Real part of Gaussian potential between η and nucleon has the following form, 
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where, Vk and μk are the potential strengths and range parameters which are adjusted in the 

calculations with 
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The transformation equation can be expressed as
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Multiplying both sides of the equation by

2
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 from the right and integration through the 

equation, we obtain 
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Figure 1 Real part of the Eta-Nucleon 

Potential 

 

Figure 2 Imaginary part of the Eta-Nucleon 

Potential 
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(13) 

The left hand side of the equation ( 13 ) was numerically solved and the right hand side 

was solved by using standard integral form. 

The above equation becomes 
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(15)   

The equation ( 14 ) is written as 

 
k

N

1k
k VBA 


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where  goes from 1 to N 

 N1N3132121111 BVBVBVBA V   

 N2N3232221212 BVBVBVBA V   

   

 NNN3N32N21N1N BVBVBVBA V   

These N linear equations are solved by using the Gauss elimination Method. The transformed 

Gaussian potential is found to be fm 20μ,fm0.05μ N1   and N=20 which are shown in 

Table ( 2 ). 
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Table 2 The range parameters and potential strengths of the transformed -N Gaussian 

potential   

Range parameter (fm)  Potential strength(MeV) 

μ(1) =  0.10000 V(1) = -0.65741 

μ (2) =  0.13216 V(2) =  0.89916 

μ (3) =  0.17466 V(3) = -3.57331 

μ (4) =  0.23084 V(4) =  6.28714 

μ (5) = 0.30508 V(5) = -11.5881 

μ (6) = 0.40321 V(6) =  14.70480 

μ (7) =  0.53289 V(7) = -21.12319 

μ (8) =  0.70428 V(8) =  23.41650 

μ ( 9) =  0.93079 V(9) = -32.04554 

μ (10) = 1.23015 V(10) = 33.71635 

μ (11) = 1.62580  V(11) = -49.02017 

μ (12) = 2.14869 V(12) = 52.08892 

μ (13) = 2.83976    V(13) = -101.83089 

μ (14) = 3.75308 V(14) = 59.00174 

μ (15) = 4.96016 V(15) = 86.98296 

μ (16) = 6.55545  V(16) = -49.78051 

μ (17) = 8.66382 V(17) = 13.37485 

μ (18) = 11.45028 V(18) = -4.59364 

       μ (20) = 20.00000             V(20) =  -0.21711 

 

Eta-Nucleus Interaction 

  The interaction between η and the core nucleus 
16

O is obtained by folding the VηN 

interaction with the density distribution of 
16

O as  
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is the distance betweenη particle and the center of the mass of the core nucleus and 
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is the nuclear density distribution of the core nucleus 

16
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is the distance between 

nucleon and center of mass of the core nucleus as shown in Fig. (3). )R(
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potential of η and the core nucleus 
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O system. The density distribution of )r(
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in harmonic 
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where,α=1.544, a=1.833fm from [8]. 

       
α)1.5(13/2π3a

A

0
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where, A=mass number of the core nucleus. 
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For O16

8  
nucleus, the density of nuclear matter 00.14067 fm

-3
.

 Then the folding potential for the phenomenological η-N interaction is  
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Figure 3 The core nucleus and η particle 

 

Density of nuclear matter
 

)ρ( 0  

 We find the existence of the value 0, known as the ‘density of nuclear matter’. The 

normalization of the charge distribution is 

 
Zedrrρ(r)4π 2  .

 (19) 

 The density is only approximate, since we have neglect the finite size of both proton and 

neutron and the effect of Coulomb forces, but it indicates that at the centre of a nucleus. 
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where A=mass number of the core nucleus 
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The Harmonic Oscillator density distribution is Gaussian 
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By using the Standard Integral form
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For O16

8
nucleus, Ze= 16. 

Substituting the parameter a=1.833fm, 1.544α  , 3.142 and A=16 for O16

8
,we get 0ρ is 

0.14067fm
-3

. 

Results and Discussion 

Binding Energy and Level Width of  O16

η Nucleus  

 Our research is to investigate the structure of η-mesic Oxygen nucleus O16

η  theoretically, 

considering as a bound system of η-meson and Oxygen core nucleus. It is found that although the

-η N interaction is attractive, it is not strong enough to have a two-body bound state. Since 

Oxygen is the double magic nucleus, it is a very high stability nucleus. Therefore we expect to be 

a bound system of double magic oxygen nucleus and -η meson. 

 Before performing the studying of η-meson Oxygen system, we have  transformed the 

functional form into Gaussian form which is nearly equivalent to original potential by applying 

the Gauss elimination method. The η-N interaction which is functional form cannot be 

analytically solved. The transformed Gaussian potential is obtained by applying the optimum 

parameter set, fm 20μ,fm0.05μ
N1
 and N=20. These transformed potential compared with 

original potential is shown in Fig.(4).  

 To study the η-nucleus bound system, we have to know the interaction between η and 

oxygen core nucleus. By folding the η-N interaction with oxygen nucleus nuclear density, we 

obtained the η-nucleus interaction. And then we have computed the eigen value of O16

η system 

with the η-nucleus folding potential. Oxygen nucleus nuclear density for Harmonic Oscillator 
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model is 
 α1.51πa

A
ρ

3/230


 . By applying the parameter a=1.833fm, 1.544α  ,3.142 and 

A=16, our calculated nuclear density 0ρ is 0.14067 fm
-3

.  

In order to calculate the structure of two-body quantum system we solved Schrödinger 

equation. To solve the Schrödinger radial equation we use the Gaussian basis wave function. We 

have calculated the eigenvalue E with corresponding eigenvectors Cj by using FORTRAN 

CODE. To solve the eigen value equation, we used the Power Inverse Iteration Method. Our 

calculated result is 3.2814 MeV and its level width is 0.3704 MeV.  

 

 

Figure 4 The real part of potentials between η and the nucleon, solid and dotted curve indicate 

the functional form and the transformed Gaussian potential, respectively. 

Conclusion 

 Our thesis is to investigate the structure of η-mesic Oxygen nucleus O16

η  theoretically, 

considering as a bound system of η-meson and Oxygen core nucleus. To study the η-Oxygen 

nucleus bound system, we have to know the interaction between η and Oxygen core nucleus O16

8
. 

The η-N interaction which is functional form cannot be analytically solved, so we transformed 

the functional form into Gaussian form by applying the Gauss elimination method. By folding        

η-N interaction with Oxygen core nucleus nuclear density we obtained the η-nucleus interaction.  

And then we compute the eigen value of O16

η system with the η-nucleus folding potential. Our 

calculated result is 3.2814 MeV with a level width is 0.3704 MeV. 
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