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Abstract 

We calculated single-particle energy of a neutron in 
208

Pb  and  single-particle energy of a 

lambda in Pb209


 with harmonic oscillator, Woods-Saxon without spin-orbit and with spin-orbit 

potentials. In these models, We solved by using Numerove's method to obtain single-particle 

energy levels in 
208

Pb and Pb209


. This model can also be extended to include the more complex 

configurations that arise for the nuclei with nucleon numbers that are in between the magic 

numbers. The lambda single-energies for 1s,1p,1d,1f states in Pb209
  

and neutron single-energies 

for various states in
 

208
Pb are calculated by using Woods-Saxon with spin-orbit potentials. The 

results of our theoretical calculation for Pb209


are compared with experimental data and with the 

previous theoretical work. It is observed that our results are nearly agreement with experimental 

results. Therefore, Numerov's method is suitable to search single particle energy levels. 

Keyword: single-particle energies, 
208

Pb, Pb209
  , Numerove method. 

 

Introduction 

Single-particle and single-hole neutron states have been previously investigated in the 

region around the doubly magic 
208

Pb nucleus [Blomqvist, J., Wahlborn Ark. S]. The interaction 

of a neutron with the rest of the nucleus referred to as the core has been represented in these 

studies by a Hamiltonian containing a nuclear Woods-Saxon (WS) potential [Woods . R. D and 

Saxon. D. S] and a spin-orbit (SO) coupling term. Although the same potential parameterization 

has been used in [Blomqvist, J., Wahlborn Ark. S] a unique set of parameter values has not been 

found. They have used the generalized Woods-Saxon (GWS) potential instead of the original WS 

potential [Woods . R. D and Saxon. D. S] , with the expectation of reproducing the experimental 

binding energies of single-particle and single-hole neutron orbitals that exist in the neutron shells 

N = 126 - 184 and 82 - 126, respectively. This potential contains the WS potential plus a term 

referred to as the surface (SU) potential that maximizes in the nuclear surface and is linearly 

proportional to the derivative of a WS function. It is a well known fact that the WS potential 

alone does not reproduce the energies of  l= 0 single-particle levels with enough accuracy when 

applied to a wide nuclide region. 

A hypernucleus is a nucleus which contains at least one hyperon in addition to the normal 

protons and neutrons. The first was discovered by Marian Danysz and Jerzy Pniewski in 1952 

using the nuclear emulsion technique. 

Protons and neutrons are made of up (u) and down (d) quarks. A Lambda (Λ) hyperon 

consists of one up, one down, and one strange (s) quark. Like neutrons the Λ-hyperons have no 

charge, but  -s are heavier than neutrons. As a hyperon does not have to obey the Pauli 

Exclusion principle with the neutrons and protons, it can enter deep inside a nucleus and occupy 

the same levels already filled with nucleons. This property of hyperons enabled us to view the 
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deep-lying shell model structure of nuclei that can not be seen in reactions with nucleons due to 

the Pauli blocking. The hyperons seem to act as glue inside a nucleus. It was found that if one 

replaces a neutron with a  -hyperon, it makes a bound Li10
  nucleus, while the normal 

10
Li 

nucleus is known to be unbound [Saha.P.K et al] . This indicates that hypernuclei with large 

neutron-to-proton ratios could exist in a stable state, even though the corresponding normal 

neutron-rich nuclei could be unstable. 

Although the nucleon-nucleon (NN) interaction is reasonably well known, the ΛN, ΛΛN 

and ΛΛ interactions are yet to be fully understood. One studies the Λ-hypernucleus to estimate 

the basic Λ-nucleon interaction. Experimentally about thirty-five hypernuclei with one              

Λ-hyperon and six hypernuclei with two Λ-hyperons have been found so far [Nakazawa. K et al]. 

The Λ and ΛΛ- separation energies from hypernuclei provide a window to estimate the ΛN, 

ΛΛN- interactions properties of Λ and nucleons.  

Numerical Calculation 

We solved numerically the radial part of Schroedinger's equation by using Numerov's 

method to obtain neutron single-particle energy. Numerov's method is a numerical method to 

solve ordinary differential equations of second order in which the first-order term does not 

appear. It is a fourth-order linear multistep method. The method is implicit, but can be made 

explicit if the differential equation is linear.  

The Numerov method can be used to solve differential equation  

2

2

d u
k(r)u(r) S(r)

dr
   (1) 

Three values of un-1, un, un+1 taken at three equidistant points rn-1, rn, rn+1 are related as follows: 

2 2 2 2
5

n+1 n 1 n n n 1 n 1 n 1 n n 1

h 5h h h
u (1 k ) 2u (1 k ) u (1 k ) (S 10S S ) 0(h )

12 12 12 12
              (2) 

Where      un = u(rn), kn = k(rn), Sn = S(rn) and h = rn+1-rn. 

For nonlinear equations of the form 

         

2

2

d u
f (u, r)

dr
  (3) 

the method gives 

  

2
5

n+1 n n-1 n 1 n n 1

h
u -2u  + u  = (f 10f f ) 0(h )

12
     (4) 

 This is an implicit linear multistep method which reduces to the explicit method given 

above if f is linear in u by setting f (u, r) = -k(r)u(r) + S(r). It achieves order-4 accuracy.  

 In numerical physics the method is used to find solutions of the unidimensional 

Schrodinger equation for arbitrary potentials. It is used to solve the radial equation for a 

spherically symmetric potential. After separating the variables and analytically solving the 

angular equation, we get the following equation of the radial function R(r):  
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2 2

2 2 2

d u(r) 2 ( 1)
E V(r) u(r) 0

dr 2 r

  
    

 
 (5) 

Where u(r) = rRnl is the reduced radial wave function.   

A regular solution near the origin for 
1u(r) : u(r 0) r    

The asymptotic solution at 
2rr : u(r ) u(r) e ,     = constant 

The Schrödinger Radial Equation can be written as follow:  

 

2

2

d u(r)
k(r)u(r) 0

dr
   (6) 

         

2

r2

''d u(r)
u k(r)u(r)

dr
   (7) 

k(r) = 

2

2 2

2 ( 1)
E V(r)

2 r

  
  

 
 is the kernel equation.  

Equation (5) can be solved by Numerov Algorithm as follow: 

First we split the r range into N points according to rn = rn-1 + h; then we write the wave function 

un u (rn)=u(rn-1+h) and kn k (rn) =k (rn-1+h). 

Expanding u(r) around rn: 

 

2 3
(r r ) (r r )n n

u(r) u(r ) (r r )u '(r ) u "(r ) u "'(r )n n n n n
2! 3!

 
      

 

4
(r r ) iv 5n

u (r ) 0(h )n
4!


    (8) 

If we evenly discretize the space, we get a grid of r points, where n 1 nh r r  . By applying the 

above equations to this discreet space, we get a relation between the un and un+1: 

2 3 4
h h h iv 5

u u(r h) u(r ) hu '(r ) u "(r ) u "'(r ) u (r ) 0(h )n n n n n nn 1
2! 3! 4!

         (9) 

Since n nu u(r ),  

 

2 3 4
iv 5

n 1 n n n n n

' " "'h h h
u u hu u u u 0(h )

2 6 24
        (10) 

Computationally, this amounts to taking a step forward by an amount h. If we want to take a step 

backwards, we repleace every h with –h and get the expression for un-1: 

2 3 4
iv 5

n 1 n n n n n n

h h h
u u(r h) u(r ) hu '(r ) u"(r ) u"'(r ) u (r ) 0(h )

2! 3! 4!
          (11) 
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2 3 4
5

n 1 n n n n

iv

n

' " "'h h h
u u hu u u u 0(h )

2 6 24
        (12) 

By summing the two equation (10) and equation (12), 

 

4
2 iv 5

n 1 n n 1 n n

" h
u 2u u h u u 0(h )

12
       (13) 

To get an expression for the 
iv

nu factor, we simply have to differentiate n n n

"u k u  twice and 

approximate it again in the same way we did this above: 

 

2
iv

n n n2

d
u ( k u )

dx
   (14) 

From equation (13), 

 
2

n 1 n n 1 n

"u 2u u h u     (15) 

 
2 iv

n 1 n n 1 n

" " "u 2u u h u     (16) 

 
2 iv

n 1 n 1 n n n 1 n 1 nu k 2u k u k h u        (17) 

Substituting equation (17) into equation (13) 

          

2
2

n 1 n n 1 n n n 1 n 1 n n n 1 n 1

h
u 2u u h u k ( u k 2u k u k )

12
              (18) 

 

2 2 2

n 1 n 1 n n n 1 n 12

h 5h h
u (1 k ) 2u (1 k ) u (1 k ) 0

12 r 12
          (19) 

from equation (19), we obtained the following relations. 

For forward recursive relation 

 

2 2

n 1 n 1 n 2 n 2

n 2

n

5h h
2(1 k )u (1 k )u

12 12u
h

(1 k )
12

     




 (20) 

For backward recursive relation 

 

2 2

n n n 1 n 1

n 1 2

n 1

5h h
2(1 k )u (1 k )u

12 12u
h

(1 k )
12

 





  




 (21) 

 Therefore when we calculate our wave function using the backward-forward technique, 

we should note that the recursive formulas imply having knowledge of two initial values for each 

direction. It is also necessary to know the first derivative at the appropriate order. By subtraction 

from equation (20) to equation (21) 
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3

n 1 n 1 n n

' "'h
u u 2hu 2 u

6
     (22) 

 

2 2

n n 1 n 1 n 1 n 1

' 1 h h
u (1 k )u (1 k )u

2h 6 6
   

 
    

 
 (23) 

We used harmonic-oscillator potential and Woods-Saxon potential in Schrodinger equation to 

obtain wave functions and energy states. The harmonic-oscillator potential (HO) is given by 

 

2 21
V(r) r

2
 

                                                                (24)
 

where µ is reduce mass of nucleon and  is the parameter. 1/ 345 A  .  

The Woods-Saxon potential is based upon the sum of a spin-independent central potential, a 

spin-orbit potential, and the Coulomb potential. The spin-orbit potential has the form, Vso(r)ℓ.s, 

where ℓ is the orbital angular momentum and s is the intrinsic spin angular momentum of the 

nucleon.  

  
V(r) V (r) V (r) . s V (r)so c0  

                               (25)
 

V0(r) is the spin-independent central potential: 

  

V0
V (r) ,0

r R
1 exp

a





 
  

 R = nuclear radius           (26) 

1/3
R r A0

. 
Vso(r) is the spin-orbit potential:  

  

r R
exp

1 d 1 1 a
V (r) V Vso so so 2

r Rr dr ra r R
1 exp 1 exp

a a



  
 

 

 
  

            
 (27)

                           

The Woods-Saxon form of potential  is assumed for the single-particle potential for the nucleon. 

The chosen parameters are r0= 1.25 fm and a= 0.65 fm . 

       

Figure 1 Woods-Saxon potential    Figure 2 Harmonic-oscillator potential  
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Calculation of Energy Levels 

 Since both uout(r) and uin(r) satisfy a homogeneous equation, their normalization can 

always be chosen so that they are set to be equal at the rc point. An energy eigen value is then 

signaled by the equality of derivatives at this point. At the matching point the eigen functions 

uout(r) and uin(r) and first derivatives out

'u (r) and in

'u (r) must all satisfy the continuity conditions: 

 out rc in rc out rc in rc(u ) (u ) (u ' ) (u ' )   (28) 

thus, we can write the corresponding condition for the logarithmic derivative at rc as  

  out in

out in rcrc

u ' u '

u u

   
   
  

 (29) 

and then we can define a Match (E) function at rc whose zeros correspond to the energy 

eigenvalues as  

 out in

out in rcrc

u ' u '
Match(E)

u u

   
    

  
 (30) 

 Therefore we proceed numerically in the following way: we set a trial energy range 

splitting this E range into N points, according to 
n n 1E E E   , where E  is the energy step. 

For each En we calculate their eigenfunctions uout and uin at the rc point; and we build the 

Match(E) function here, looking for a change of sign in it (which implies a zero cross).  

When we find the energy eigenvalue, the calculated inwards and outwards eigenfunctions 

will tend not to match at the rc point. However we can look for a strategy to solve this problem. 

Denoting the outwards and inwards functions directly obtained from the recursive formulas as 

uo(r) and ui (r), respectively.  

 

Results and Discussion 

 

4.1 Single-Particle Energy Levels of a Neutron in 
208

Pb  

We solved numerically the shoredinger equation by using Numerov's method to obtain 

single particle energy levels of a neutron in 
208

Pb. It is used the harmonic oscillator potential, 

central potential and Woods-Saxon potential. The neutron single particle energy levels and sub 

energy levels are obtained from central potential and Woods-Saxon potential with spin orbit. The 

results are shown in table(1) and figure (3). It is observed that energy levels are split sub energy 

levels by using Woods-Saxon potential. The wave functions for various state such as s, p and      

d  states. The results are shown in Fig.  (4), (5) and (6). It is seen that wave functions for all 

bound states are convergent. Figure (7), (8) and (9) are shown various principal number of s,       

p and d state. These wave functions are shifted to higher state. 
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Table 1  Single particle energies in 
208

Pb for various states 

Harmonic Oscillator 

Potential 

Woods-Saxon potential 

without Spin-orbit 

Woods-Saxon potential 

with Spin-orbit 

Shell 
Energy 

(MeV) 
Shell 

Energy 

(MeV) 
Shell 

Energy 

(MeV) 

1s -42.6 1s -42.6 1s -42.6 

1p -34.76 1p -38.36 1p3/2 

1p1/2 

-38.45 

-38.19 

1d, 2s -27.16 1d 

2s 

-33.41 

-31.6 

1d5/2 

1d3/2 

2s 

-33.68 

-33.03 

-31.6 

1f , 2p -19.56 1f 

 

2p 

-27.72 

 

-24.94 

 

1f7/2 

1f5/2 

2p3/2 

2p1/2 

-28.26 

-27.04 

-25.12 

-24.59 

1g, 2d, 3s -11.96 1g 

 

2d 

 

3s 

-21.37 

 

-17.85 

 

-14.44 

1g9/2 

1g7/2 

2d5/2 

2d3/2 

 

-22.28 

-20.3 

-18.28 

-17.23 

 

1h, 2f, 3p -4.36 1h 

 

2f 

 

3p 

-11.96 

 

-10.44 

 

-8.66 

1h11/2 

1h9/2 

2f7/2 

2f5/2 

 

-15.79 

-12.9 

-11.15 

-9.48 

 

 

Figure 3  Neutron single-particle states  in 
208

Pb 
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Figure 5 p-states wave functions for 
208

Pb  

 

Figure 7  wave functions for 1s,1p and 1d states  

 

Figure 9  wave functions for 3s,3p and 3d for 
208

Pb  

Figure 4  s-states wave functions for 
208

Pb  

1s 

Figure 6  d-states wave functions for 
208

Pb  

 

Figure 8  wave functions for 2s, 2p and 2d 

 for 
208

Pb  
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4.2  Single-Particle Energy Levels of a Lambda in  Pb209
  

The number of neutrons are allowed by the Pauli principle to occupy one of these levels. 

As a hyperon does not have to obey the Pauli Exclusion principle with the neutrons and protons, 

it can enter deep inside a nucleus and occupy the same levels already filled with nucleons. 

Lambda single-particle energy in Pb209
 are calculated by using Numerov's method. The results are 

shown in the following figures. 

Fig.(10) shows lambda s-states wave functions with harmonic oscillator potential for Pb209


. Fig. (11) and (11) show lambda p and d-states wave functions with harmonic oscillator potential 

for Pb209
 . It is seen that all wave functions are finite.  The lambda single-particle states in Pb209

  

with Woods-Saxon spin orbit potential are obtained  by solving Schrödinger equation. The results 

are shown in Table (1). It is indicated the effect of the spin-orbit potential in splitting the states of 

a given ℓ value. The overall strength of the spin-orbit potential has been determined empirically. 

We compare our results with experimental results [Ajimura. S et al] and theoretical results of 

Vidana.A et al.  

 

Table 2 Comparison of theoretical results and experimental results of Lambda single-

particle energies in Pb209
  

Sub 

Shell 

Theoretical  results   

[Vidana.A et al] (MeV) 

Experimental 

results  

[Ajimura.S et al]  

(MeV) 

Our results 

(MeV) 
O A F 

1s -23.1 -29.5 -26.5 -27.0 -25.85 

1p -19.6 -25.7 -22.4 -22.0 -21.89 

1d -14.5 -21.0 -17.5 -17.0 -17.18 

1f -10.5 -15.7 -11.8 -12.0 -11.9 

1g -5.1 -9.7 -5.6 -7.0 -6.0 

 

                 

 

 

 

Figure 10  Neutron s-states wave functions  

for Pb209
  

 

Figure 11  Neutron p-states wave functions 

for Pb209
  
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Conclusion 

We calculated neutron single particle energies in 
208

Pb and lambda single particle 

energies in Pb209
  by using Numerov's method for harmonic oscillator, central potential and spin-

orbit WoodsSaxon potential. It is observed that the energy levels are split in to sub energy levels. 

Our results for Pb209
 are compared with experimental results [Ajimura.S et al]  and other 

theoretical results by Vidana. A. et al.,  are calculated Brueckner-Hartree-Fock method for 

Nijmegen various O, A and F which are divided according to effective mass of lambda 
*m / m 0.78,0.67   and 0.81. Our calculated results for Pb209

  are nearly agreement with the 

experimental results and theoretical results of Nijmegen potential F. 
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