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Abstract 

In this research, the Faddeev technique is applied to compute the ground state binding energy of 

three-nucleon system. Yukawa type malflit-Tjon potential is used for nucleon-nucleon interaction.  

The three-nucleon binding energy for s wave (    ) interaction is 7.538 MeV and for       

the binding energy becomes 7.550 MeV. 
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Introduction 

Historically, the study of the three-body problems is decisive importance for nuclear 

physics.  The bound state of three nucleons is still not understood since the nuclear interactions 

cannot be calculated rigorously from an underlying theory.  Therefore test of similar basic nature 

still lie in the future.  At present one uses purely phenomenological forces based on meson theory 

[Machleidt R,1989] and adjusts them to describe two-nucleon observables.  The question is then 

whether these forces are also sufficient to describe three interacting nucleons or whether in 

addition three-nucleon forces are needed [Friar J.L, Gibson B.F, and Payne G.L, 1984].  Since 

the three-body Schrödinger equation can be solved numerically in a precise manner, the three-

nucleon system plays a very significant role in answering that question.  In the three-body 

problem one has to face the geometrical difficulty of a three-body, spin- and iso-spin degrees of 

freedom and the violent variation of the nuclear force at short distances which induces high 

momentum components into the wave function.   

Some other approaches used to treat three-body systems are variational calculations 

[Delves L.M, 1972], the use of hyperspherical harmonics [Fabre de la Ripelle M,1987], and the 

Green's function Monte Carlo technique [Schmidt K.E, 1987].  The Faddeev equations have been 

discussed extensively [Glockle W, 1983].  We shall present only the momentum space treatment 

of Faddeev equation.  The momentum space is the natural one if one uses field theoretical 

potentials like the OBEP(one-boson-exchange potential)[ Holinde K, Machleidt R,1975]. 

The three- and four-body problems present an interesting challenge to do research.  

Therefore, we are interested in the three-nucleon system (triton).  Before going to solve real   
  

system, we will start with a simple system called three-boson system.  In this case all three 

nucleons are considered as spinless particles.  The real problem of three nucleons (triton) will be 

described in the following articles. 
 

The Basic Definition for Three-Body System 

In a three-body system there are three different two-body subsystems.  We can choose 

one of them and if we choose the particle “1” as a spectator, only particle “2” and “3” will 

interact.  There are relative motions of particle “1” to the center of mass position of the pair (2,3) 

and we call this state channel “1” and for example it is shown in Fig.(1). 
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Figure 1  Particle configuration for channel “1”. 

For identical particles, m1=m2=m3 and therefore 
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Generally, we can express for other channels as 
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For the simplest case of three identical particles called bosons, we can write the state for channel 

“1” is 11
pqLM)(pq 

, where “p” is the relative momentum and “ ” is the relative orbital 

angular momentum of particle “2” and “3”, “q” is the relative momentum and “ ”is the orbital 

angular momentum of particle “1” with respect to the subsystem(2,3).  The relative motion of 

three particles is conveniently described by Jacobi momenta. 
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For identical particles, 
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and their states are 
111qp , 

222qp  and 
333qp . 

The two-body subsystem can be transformed by the permutation operators P12P23 and 

P13P23 as 

2231212312 pq)31,2()23,1(pq  PPPP
,  3231312313 pq)12,3()23,1(pq  PPPP

 

The operators have to be evaluated in the same type of basis vectors such as 
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k1 = momentum of particle 1 

k2= momentum of particle 2 

k3= momentum of particle 3 



J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2B 519 

Three-Body Faddeev Equations 

 The Faddeev equations [Faddeev L.D, 1961] have been proven to be very useful and we 

shall concentrate on them in this paper.  The Faddeev equations transcribe the content of the 

Schrödinger equation in a unique manner into a set of three coupled equations. 

The Schrödinger equation for a three-body system is  

 



3

1

0 )V(
i

iH  (1) 

where kji,  jki VV (Interaction in two-body subsystem), 0H  is the kinetic energy of 

the relative motion for three particles. 

The solution of Schrödinger equation is 
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where 
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0
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H
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
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 and G0 is free three-body propagator.    is decomposed into 3-

components and these are called Faddeev components. 

  
i

ψΨ
3

1i




  (4) 

We define 

 ΨVGψ i0i   (5) 

Eq.(4) is inserted for   on the right hand side in the Eq.(5), 

 



3

1j

ji0i ψVGψ  (6) 

simply rearrange Eq.(6) and becomes  

 



ij

ji0ii0 ψVG)ψVG(1  (7) 

We can expand 
1

i0 )VG(1   by using binomial theorem  

 1

0 )1(  iVG iVG0  = i0i0i0i0 VG)VGVGVG1(   

                                                  = )VGVGVVGVV(G i0i0ii0ii0  = iTG0  

We define Ti as follow 

 i0iii TGVVT   (8) 
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where Ti is the two-body T operator for the pair i. 

The Eq.(7) becomes 

   




ij

ji0i ψTGψ                      (9) 

If we expand  

 )ψ(ψTGψ 32101     (10) 

 )ψ(ψTGψ 13202   (11) 

 )ψ(ψTGψ 21303   (12) 

This is a set of 3-coupled equation called Faddeev equation.  For identical particles, the 

three equations can be reduced to a single one by using permutation operators.  Therefore, the 

Faddeev equation for three identical particles is  

  TPG0  (13) 

where, P is the permutation operator and it is defined as 

 23132312 PPPPP   (14) 

 

The Faddeev Equation in Momentum Space for Three-Boson System 

We consider the Faddeev equation (ψ=G0TP ψ) in the momentum space representation.  

We project ψ on the three particle basis state 
 pqλ)LMpq(
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Then, we insert the completeness relation  
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The two-body T-matrix term from the Eq.(17) must have the following condition 

 )
4m
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2
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
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  For ground state, one has L=0 and consequently   =  and first we consider the simplest 

case of pure s-wave interaction (  =0).  The Faddeev component from the Eq.(17) is defined as 
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 )pq(0M)0L,0,0(pq   (19) 

Evaluation of permutation operator P from the Eq.(17) is the purely geometrical problem.  

 123132312111
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 (20) 
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Again P13P23 = P23P12P23P23 and  
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For bosons both  and ' have to be even and therefore, 
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Therefore Eq.(21) can be written as 
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Then, Eq.(17) becomes  
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This integral equation in two variables is the three-boson Faddeev equation for pure s-wave 

interaction. 

Again we consider the  up to two.  Generally for any   
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The Fadeev equation in momentum space representation for three-boson system becomes 

as the following equation 
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Calculation of Two-Body T-Matrix Embedded In three-body space  

For studying the three-body system, we require to know the two-body off shell T-matrix.  

We have known T = V+VG0T and the two-body T-operator in the three particle basis state is  
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22    in the second term on the right 

hand side. 
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The two-body T-operator in the three particles basis is clearly diagonal in the spectator quantum numbers 

“q” and “ ” but depends on “q” through the kinetic energy in G0.  The energy available to the interacting 

two-body subsystem is mqE 4/3 2 : consequently the T-operator is 

 












4m

3q
E,pp,tδ

qq

)qδ(q
αqpTpqα

2

αα' ' 

 

(32) 

The two-body interaction in the three-particle basis is  
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Then the two-body T-matrix for three-boson system is 
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This equation can be solved by using the Gauss Elimination Method. 

Numerical Technique 

 The integral equation Eq.(35) is discretized in the variable “q”.  We have to choose the 

appropriate quadrature points “q” and “x”.  We introduce a cut-off value qmax and distribute properly 

Gauss-Legendre quadrature points over the intervals max0 qq  . But the skew arguments  2π  in   

under integral require an interpolation.  The maximal value of 2 is 2/3 maxq .  This fact is important in 

keeping the number of discretization points as low as possible.  The two- body subsystem is controlled by 

the variable “p”.  The value 2/3 maxq  is much lower than the typical cut-off value in p-variable beyond 

which )pq(  can be neglected.  Faddeev equation Eq.(35) is solved in that smaller interval. 

We now consider an interpolation in the form 
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where Sk(x) are known function and {xk} is a set of discrete grid point distributed over an interval in 

which function “f” has to be determined.  We apply this form to the p-variable in the Faddeev equation 

Eq.(35). 
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Then we introduce Gaussian quadrature in the variable “q” and then 
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This is the Faddeev equation for three-boson system and it can easily be solved 

numerically. 

 

 

 



524               J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2B 

Numerical Accuracy  

Our three-boson Faddeev equation is an integral equation and we will solve it 

numerically.  And hence, we will present the convergence of the three-boson binding energy by 

varying the number of integration grid points.  In order to solve the Faddeev components we 

have defined Nq is a number of discrete “q” points which represent the spectator momentum, Np 

is the number of grid points of relative momentum of two-body subsystem which is divided into 

two parts Np1 and Np2 and Nx is the corresponding number of x integration.  We have taken two 

parts of integration limit in the momentum “p” range, the first interval is taken by         to 

     
     

 
         and the range of the second interval from      to     .  First we take 

Np1=10, Np2=10, Np=10,           
   and             

   arbitrarily and then we 

studied the precision of binding energy by varying the number of grid points Np1 in the first 

interval.  We have found that the binding energy is converged to three decimal places at the 

number of grid point Np1=30.  These results are displayed in Table 1.  

Table 1  The convergence of binding energy by varying the number of grid point points 

Np1 in the first interval for          
  . 

Np1 Np2 Nq Nx           BE(MeV) 

10 10 10 10 5.00 40.00 7.7732 

20 10 10 10 5.00 40.00 7.5698 

30 10 10 10 5.00 40.00 7.5675 

40 10 10 10 5.00 40.00 7.5670 

 

Then, we fixed the parameters of first interval and we studied the precision of binding energy by 

varying the number of grid point Np2 of the second interval.  We observed that the binding 

energy is converged to four decimal places at the number of grid point Np2=16.  The results are 

shown in Table 2.  

Table 2  The convergence of binding energy by varying the number of grid point points Np2 

in the second interval for          
  . 

Np1 Np2 Nq Nx           BE(MeV) 

30 12 10 10 5.00 40.00 7.5673 

30 14 10 10 5.00 40.00 7.5673 

30 16 10 10 5.00 40.00 7.5672 

30 18 10 10 5.00 40.00 7.5672 

30 20 10 10 5.00 40.00 7.5672 

We fixed these data set such as Np1=30, Np2=16 and          
  , then vary Nq, the 

binding energy is converged to four decimal places at Nq=20.  The results are shown in Table 3. 

  



J. Myanmar Acad. Arts Sci. 2020 Vol. XVIII.No.2B 525 

Table 3  The convergence of binding energy by varying the number of grid point points Nq 

for          
  . 

Np1 Np2 Nq Nx           BE(MeV) 

30 16 16 10 5.00 40.00 7.5369 

30 16 18 10 5.00 40.00 7.5366 

30 16 20 10 5.00 40.00 7.5367 

30 16 22 10 5.00 40.00 7.5367 

30 16 24 10 5.00 40.00 7.5367 
 

Then we increase the      value to         . By varying the number of grid points Np2, the 

binding energy is converged to 7.5376 MeV at Np2=16 which is shown in Table 4.   

Table 4  The convergence of binding energy by varying the number of grid point points Np2 

in the second interval with          
  . 

Np1 Np2 Nq Nx           BE(MeV) 

30 16 10 10 5.00 50.00 7.5376 

30 18 10 10 5.00 50.00 7.5376 

30 20 10 10 5.00 50.00 7.5376 

30 22 10 10 5.00 50.00 7.5376 

30 24 10 10 5.00 50.00 7.5376 

 

Again we increase the      value to         . We studied the precision of binding 

energy by varying the number of grid point Np1 and Np2 and Nq as the same procedure given 

above (Here we will not show the tables to save the page). The binding energy is converged to 

7.5376 MeV and we have found that a small change in binding energy in the comparing the result 

of            
  . So we decide            

   is enough for that system. Therefore we 

choose the parameter set of Np1=30, Np2=16, Nq=20,             
   and            

   

for that system and the binding energy of three-boson system is 7.5376MeV. 

 

Result and discussion 

We have found that the binding energy of the ground state of three-boson system is           

7.538 MeV for pure s-wave interaction (  =0) and when we increase   up to two, the binding 

energy becomes 7.550 MeV. Our result does not agree with the experimental value of triton 

binding energy 8.48 MeV. The disagreement of our result and experimental value can be the 

following reasons: the two-body potential which we have used is not realistic potential and our 

system is not the realistic description of three-nucleon problem, it has been reduced to be a 

simple problem say three-boson system.  We expect that our result will nearly agree with the 

experimental value if we include the spin and iso-spin.  The realistic three-nucleon (triton) 

system will be presented in the upcoming paper.  
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