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Abstract 
In this research work, the single-particle energy levels of -

hypernuclear carbon isotopes, namely C13
Λ , C14

Λ and C15
  was investigated. 

The folding -nucleus potential based on effective -nucleon interaction 
which is constructed by Akaishi is used. The calculated binding energies of 

C13
Λ and C14

Λ by applying folding -nucleus potential are two times larger 
than the experimental results. In the folding process, only Hartree potential 
called direct term is considered but Fock term which can give the repulsive 
effect is neglected. The correction term  rV  of spin and charge 
dependence of the effective -N interaction is not taken into account. In 
addition, we assume that the proton density distribution and neutron density 
distribution are the same. Moreover, the  single-particle energy levels of 
these hypernuclei have also been calculated by using Woods-Saxon 
potential including spin-orbit interaction. In this calculation,  single 
particle energy levels of s-state and p-state are  -11.57 MeV, -1.32 MeV for 

C13
Λ , -12.10 MeV, -1.81 MeV for C14

Λ  respectively. The  single-particle 
energy levels of s-state for C13

Λ  and C14
Λ  are in good agreement with the 

experimental and theoretical results. The  single-particle energy levels of 
C15

  are estimated to be -12.59 MeV for s-state and -2.29 MeV for p-state.  
Key words:  effective -nucleon interaction, Woods-Saxon potential,   

single-particle energy, -hypernuclei 
 

Introduction 
 Hypernuclear physics is an interesting subject and the study of short-
lived hypernuclei can provide new information and dynamical features such as 
hyperon-nucleon interaction and hyperon-hyperon interaction.These 
interactions are indispensable for the understanding of high-density nuclear 
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matter inside neutron stars where hyperons are possibly mixed and playing 
extremely important roles.  Generally, the scattering experiments are the most 
suitable experiments to provide the determination of any interaction.  
However, in hypernuclear physics, hyperon–nucleon (YN) scattering 
experiment are quite difficult to carry out as in nucleon-nucleon (NN) case 
due to the short life of hyperons.  It is impossible to create either the incident 
hyperon beams or hyperon targets.  Therefore, the information of Y-N 
interaction could be deduced only from the existing data of hypernuclei. As 
the experimental motivation, the strangeness hypernuclei could be produced 
from the emulsion experiments and counter experiments (Danysz, M. et al., 
(1953), Prowse, D.D.J., (1966), Milner, C. et al., (1985), Dluzewski, P. et al., 
(1988), Hashimoto, A. et al., (1989), Chrien, R.E. et al., (1989) & Dover, C.B. 
et al., (1989)). The experimental and theoretical investigations of hypernuclear 
physics, the understanding of the hyperon-nucleon interaction and its role in 
few-body systems, were made the summary reports (Bando, H. et al., (1990) 
& Gibson, B.F. and Hungerford III, E.V., (1995)).  However, there was still a 
problem to understand hyperon-nucleon interaction and hyperon-hyperon 
interaction deeply. 

Thus, a new spectroscopic study of C12
Λ  by the (  K,π ) reaction was 

reported by Haseagawa (Hasegawa, T. et al., (1996)).  The information of 
some p-shell Λ-hypernuclei observed from (  K,π ) reaction with the use of 
Ge detector array Hyperball was interpreted by employing shell-model 
calculations. In this calculation, both  and  channels are included (Millener, 
D.J., (2008)). From theoretical investigation of the neutron-rich -
hypernuclei, new information of hypernuclear physics such as a strong 
attractive mechanism due to coherent - coupling for single -hypernuclei 
and the significance of - coulping effect in formation of double 
strangeness -hypernuclei could be explained (Akaishi, Y. et al., (2000) & 
Myint, K.S., et al., (2003)).  Moreover, from the theoretical point of view, the 
structure analysis of -hypernuclei is investigated by applying various models 
such as a single-particle model, shell model and cluster model.  The binding 
energies of p-shell Λ-hypernuclei such as Li,He 7,8,9

Λ
6
Λ and C12,13,14

Λ  were 
calculated by using folding potential (Kolesnikov, N.N. and Kalachev, S.A., 
(2006)). 
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The structure calculation of ,Be9

Λ  C13
Λ  and Ne20,21

Λ  were investigated by 
Kimura.  Their calculated ground state binding energy of C13

Λ  with the use of 
an effective ΛN interaction is 11.6 MeV (Kimura, M. et al., (2011)).  Thus, 
we also would like to investigate the structure analysis of Λ-hypernuclei 
namely, C13

Λ  and, C14
Λ  and C15

Λ . 
 

Mathematical Formulation 
Derivation of Energy Matrix Elements 

In order to calculate the structure analysis of -hypernucleus, we will 
start the radial part time-independent Schrödinger equation for two-body 
system as follows. 

Eu(r)u(r)V(r)r
1)(

2dr
d

2 2
2

2
22 


 

  .   (1) 

In this equation,  is the reduced mass of  hyperon and core nucleus.  
For our calculation, Gaussian basis wave function with expansion coefficients 
( jc ) and range parameters ( jb ) is used, 
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j
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The Schrödinger equation becomes as, 
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The above equation was multiplied both sides of the equation by 2j )br(1)( er   
from the left and integrated through the equation; 
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We, therefore, can define the above equation as  
 

j j
jijjij cNEcH , 

where,                        
ijijijij VFTH  . 

In this equation, 
ijT and 

ijF  are the kinetic energy, centrifugal potential 
energy matrix elements and 

ijV  is potential energy matrix elements which are 
described as follows: 

drerdr
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2
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
ijN  stands for the norm matrix element, 

dreerN 2)jbr(2)ibr(1)2(
ij

  . (8) 
The ijN , ijT  and ijF  are analytically solved by using standard integral 

1)(2n0 1)(n
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a
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



  , and then the norm matrix element, kinetic 

energy matrix element, centrifugal potential energy matrix element can be 
expressed as follows. 
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The combination of the kinetic energy matrix element and the 
centrifugal potential matrix element can be written as, 

2
j

2
i

ij
2

ijij bb
6)(4N 2MFT 

   . (12) 

The potential energy matrix element is 
dreV(r)rerV 2)jbr(1)(2)ibr(1)(

ij
  . (13) 

In order to solve the above equation, it is necessary to know the -core 
nucleus interaction V(r). 

Interaction between  hyperon and Core Nucleus 
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For the calculation of potential energy matrix element, two types of 
potential namely folding potential which is based on effective Λ-N interaction 
and phenomenological Woods-Saxon -core nucleus potential are used. 

 

(a) Folding potential 
The effective N interaction derived by Akaishi (Akaishi.Y., Private 

Communication) will be firstly used.  The -nucleon interaction depends on 
states such as even state, odd state, spin singlet state and spin triplet state and 
thus this interaction is expressed in five-range Gaussian form as follows; 
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3
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ΛNΛN  , 
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The strength parameters of effective Λ-N interaction in even state and 
odd state are given in table (1).  
Table 1. The strength parameters of effective -nucleon interaction 

Even-state Odd-state 
)S(V 0

1
ΛNΛN

(MeV)
 

)S(V 1
3

ΛNΛN
(MeV)

)S(V 0
1

ΛNΛN (MeV)
 

)S(V 1
3

ΛNΛN
(MeV)

 47.99645  -46.25826  23.462 230.12 
-272.7777 -43.83829 -257.22 -614.76 
679.7185 493.1045 33.823 855.15 
-160.1574 -136.9770 -57.307 -66.964 
-2.274696 -0.568783 -0.19762 1.7357 

 
The schematic diagram of a relation between Λ hyperon and core nucleus is 
shown in Fig. 1.  
              
 

Core nucleus (carbon) 
 R

rR  
r

N 
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Figure 1. The schematic diagram of a relation between Λ and core nucleus 

 

And thus the -core nucleus interaction is obtained by folding the 
effective N interaction with the density distribution )(r of core nucleus.  
Therefore, the effective interaction between Λ and the core nucleus can be 
written as 

d(r)ρ(r)r)(RV(R)V ΛNcoreΛ   . (15) 
For the density distribution, we will use the proton density or charge 

density distribution in harmonic oscillator model and we will assume that the 
proton density distribution is the same as the neutron density distribution.  
Thus, the density distribution (r)ρ (Dejager, C.W. et al., (1974)) for core 
nucleus is 

 2ar2
20 era
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  . (16) 

The values of α and a are 1.067 fm, 1.687 fm for C13 , 1.403 fm, 1.635 
fm for C14  and 1.38 fm, 1.73 fm for C15  respectively. By substituting the 
density distribution )(r , effective interaction in equation (13) and solving it, 
the -core nucleus interaction can be obtained as  
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The above equation (17) is the folding potential or -core nucleus 
interaction for the interested system.  After getting the -core nucleus 
interaction, the potential energy matrix element can be computed by using 
equation (13) and the result is as follows. 
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Thus the folding potential energy matrix element is 
   1

3
ij0

1
ijij SV4

3SV4
1V    (19) 

 

(a) Woods-Saxon potential 
For this potential, a  hyperon moves independently in an average 

potential well generated by the other nucleons.  The phenomenological 
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Woods-Saxon potential (Dudek, J. et al., (1981)) having the interaction 
strength 0V = 30 MeV and the nuclear density ρ(r)  is 

ρ(r)V(r)V 0s-w   (20) 

where, 
a
Rre1

1ρ(r) 
 , the nuclear radius R = 0r 3

1
A =1.1 3

1
A fm and the 

diffuseness parameter a=0.6 fm.  The mass number A is for the core nucleus.  
We will also consider spin-orbit interaction which is mentioned as followed; 

  2

π
sos cmVrV 


 

 (ℓ.s)  
dr

rdρ
r
1 and  

Thus the potential becomes; 
2

π
SO0 )cm(Vρ(r)VV(r)  (ℓ.s)  

dr
rdρ

r
1 . (21) 

In this equation, cm π

 is Compton wavelength and spin-orbit constant soV  is 
chosen as 4 MeV.  The scalar product of LS coupling is 
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represents for stretch case and Jackknife case. For stretch case, 2
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and  

For Jackknife case, 2
1j    , the potential becomes as 
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By using the above two equations, we can calculate the potential energy 
matrix elements which are described as follows.
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Equations (17), (22) and (23) are the potential energy matrix elements 
for the two interaction types.  Although the folding potential energy matrix 
element can be computed analytically, the phenomenological Woods-Saxon 
potential energy matrix elements cannot be find out the solution.  Thus, the 
latter potential energy matrix element have been solved numerically.  In order 
to calculate the binding energy of C13

Λ , C14
Λ and C15

  and -single particle 
energy levels, power inverse iteration method is used as the numerical 
calculation for solving nonrelativistic Schrödinger equation. 
 

Results and Discussions 
We have calculated  single-particle energy in carbon isotopes, C13

 , 
C14

  and C15
 , by solving Schrödinger equation with the use of Gaussian basis 

wave function.  Two types of potential namely folding potential and 
phenomenological Woods-Saxon central potential including spin-orbit 
coupling are applied in this calculation.  The effective -N interaction and 
phenomenological Woods-Saxon potential which are shown in Fig. 2 have 
been plotted in order to understand the behavior of the interaction.  According 
to this figure, the effective -N interaction strength for singlet state is 
appreciably stronger than that in triplet state.  

 



J. Myanmar Acad. Arts  Sci. 2018 Vol. XVI. No.2 85  

 
 Figure 2. The two potential types; state-dependent effective -N interaction 
           and phenomenological Woods-Saxon potential 
 

In addition, we have also investigated the density distribution of the 
core nuclei, carbon isotopes, 12C, 13C and 14C which is displayed in Fig. 3.  
From this graph, we can clearly see that the density distribution of C12  is 
smoother than that of C13  and C14 . 

 
Figure 3. Density distribution of carbon isotope 

 The single-particle energy levels of C13
Λ , C14

Λ  and C15
  are 

investigated by using folding potential based on effective -N interaction.  
The calculated results are shown in Table (2).  The calculated results for C13

Λ  
and C14

Λ are two times larger than the experimental results (Ajimura, S. et al., 
(2001) & Kohri, H. et al., (2002)).  This is due to the fact that only Hartree 
term (or) direct term is considered but Fock term or exchange term which can 
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give the repulsive effect is neglected.  In addition, the correction term of spin 
and charge dependence of -N interaction ∆V(r) is not taken into account in 
our calculation.  We used the proton density distribution or charge density 
distribution in harmonic oscillator model and we assume that this proton 
density distribution is also the same as the neutron density distribution for our 
system, C13

Λ , C14
Λ  and C15

 . 
Table 2.  The single-particle energy levels of C13

Λ , C14
Λ and C15

  by using 
                folding potential 
 

 single-particle energy 
state (MeV) C13

Λ  C14
Λ  C15

Λ  
s-state -23.89 -27.68 -27.61 
Experimental result ( s-state):   
(Ajimura, S. et al., (2001) & Kohri, 
H. et al., (2002)) 

12.069.11 
 

33.017.12 
 

- 
 

Moreover, the single-particle energy levels of C13
Λ , C14

Λ and C15  by 
using phenomenological Woods-Saxon central potential including spin-orbit 
coupling are displayed in Table (3).  By using Woods-Saxon potential 
including spin-orbit interaction, the  single-particle energy levels of s-state 
and p-state are -11.57 MeV, -1.32 MeV for C13

Λ , -12.10 MeV, -1.81 MeV for 
C14

Λ and -12.59 MeV, -2.29 MeV for C15
 , respectively.  The binding energy of 

single -hypernucleus, C13
Λ  was also investigated by Kimura and his group by 

using an effective N interaction.  Their calculated result is 11.6 MeV 
(Kimura, M. et al., (2011)).  Our calculated results by using Woods-Saxon 
central potential including spin-orbit interaction are in good agreement with 
Kimura’s result and the experimental results (Ajimura, S. et al., (2001) & 
Kohri, H. et al., (2002)). 
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Table 3. The single-particle energy levels of C13

Λ , C14
Λ and C15 by using 

             Woods-Saxon potential including spin-orbit interaction 

 

Conclusion 
The  single-particle energy levels of C13

Λ , C14
Λ  and C15  have been 

investigated by solving time-independent Schrödinger equation.  Gaussian 
basis wave function is used for our consideration systems.  The folding -
nucleus potential based on effective -nucleon interaction and Woods-Saxon 
potential including spin-orbit interaction are used.  The calculated binding 
energy of C13

Λ  and C14
Λ  by applying folding -nucleus potential are two times 

larger than the experimental results.  In this folding potential, only Hartree 
potential or direct term which can give the attractive effect is considered but 
Fock potential which can give the repulsive effect is neglected.  The 
correction term  rΔV  of spin and charge dependence of  -N interaction is 
not taken into account.  Moreover, we also assume that the proton density 
distribution and neutron density distribution are the same.  By using Woods-
Saxon potential including spin-orbit interaction, the  single-particle energy 
levels of s-state and p-state are -11.57 MeV, -1.32 MeV for C13

Λ , -12.10 MeV, 
-1.81 MeV for C14

Λ and -12.59 MeV, -2.29 MeV for C15 , respectively.  The  
single-particle energy levels of s-state for C13

Λ  and C14
Λ  are in good agreement 

with the experimental results. 
 
 
 

Single-Particle Energy 
States (MeV) C13

Λ  C14
Λ  C15

Λ  
s-state -11.57 -12.10 -12.59 

2
3p -state  -1.32 -1.81 -2.29 

Experimental result (s-state) 
(Ajimura, S. et al., (2001) &       

Kohri, H. et al., (2002)) 
12.069.11   33.017.12 

 
- 
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