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Abstract 
The purpose of this research is to study the resonance energy of 

Heଶହ  (, n) system by solving the two body Schrödinger equation with 
complex scaling method.    The Gaussian basis wave function is used to 
solve the two body Schrödinger equation for (J = 3/2- ) state and (J = 1/2- ) 
state in spin-orbit coupling.  The calculated resonance energies and level 
widths for  (J = 3/2- ) state and (J = 1/2- ) state are (0.747, 0.596) MeV and 
(2.147, 5.533) MeV respectively. Comparison is made with the 
experimental data and good agreement is found. 
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Introduction 
The nuclear structure is roughly homogeneous distribution of neutrons 

and protons. Binding energy curve is the experimental evidence about the 
nuclear structure. The shape of this curve is the reflection of structure of 
nucleus. Hence every theory which evolved from 1930s till this time was 
trying to reproduce the binding energy curve. It started from the Liquid Drop 
Model (LDM), Alpha Clustering Model and now it reaches at the shell model, 
which is the most successful model in describing the structure of nucleus so 
far. However, the clustering phenomena is important to determine the 
structure of light nuclei.  

LDM could fit smoothly with the binding energy curve and explain the 
fission mechanism successfully, but could not explain why there is a large 
binding energy for even nuclei such as 4He, 12C, etc. The success of the shell 
model is that it could explain the reason behind the large binding energy for 
even nuclei. According to the simplest shell model, every nuclei is spherical in 
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structure. But many experimental results revealed that 90% of the nuclei are 
not spherical. Therefore, the extension of the shell model for the deformed 
nuclei shape is given first by S.G. Nilsson in 1955. Some experimental studies 
at CERN (Gaffney, 2013) show that the structure of Rn(Radon) is not 
spherical but pear shaped and they expect to see more such nuclei near 
Th(Thorium). These results show that there is a need for a new theory to well 
explain the structure of nuclei. There is the interaction between nucleons (as it 
is in reality) in the model approach, it can expect the formation of clusters. 
Clustering is a natural energy minimization mechanism. There is a large scale, 
it can see Galaxy clusters, star clusters, planets, etc. There are the small scales, 
it can also see clustering, quarks clustered to form molecules.  

The idea of alpha clustering has a history back to 1930s. By observing 
alpha decay from nucleus, people speculated that nuclei are made up of alpha 
particles. 8Be has one bond between two alpha particles and they dumbbell-
like shape, 12C has three alpha bonds and triangular shape, and 16O has six 
alpha bonds and tetrahedral shape.  

 

Resonances 
The first resonance in particle physics was discovered by H. Anderson, 

E. Fermi, E. A. Long, and D. E. Nagle, working at the Chicago Cyclotron in 
1952. Resonance states are formed when quantum particles collide at certain 
(resonant) energies. Before moving apart, they stay together for a while. 
During the resonance lifetime, the particles move around each other and 
“forget” the direction from which they came. Therefore, when the resonance 
eventually decays, the particles “choose” the direction to move away at 
random. 

A resonance can be viewed and approached from two different angles, 
as a delay connected with an enhanced phased shift in a scattering process or 
as a long-lived but decaying state of a compound system. The main 
observable characteristics of a resonance are position and the width. The real 
and imaginary parts of the energy give the position and width of the 
resonance, respectively. 
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A resonance energy is   2

ΓiEE rres    has a negative imaginary part, 
which is called resonance width. The use of a complex energy allows a 
classification of the energy levels of a quantum system.  

Spin-Parity States of Ηe5
2  Resonance 

In shell-model, shells are filled according to Pauli principle.              
This independence particle model further assumes a strong spin-orbit coupling 
so that each individual nucleon has a total angular momentum 2

1j    except 
in case 0  when j has only one value 2

1
2
1  .  Thus each energy levels 

splits up into two sub-levels with 2
1j   (s and  parallel) and 2

1j    
(s and   anti-parallel). The sub-level 2

1j  has a lower energy than the sub-
level 2

1j . Each sub level of N=1 can have a maximum of (2j+1) nucleons of 
the same kinds. 

For odd mass nuclei, spin and parity is determined by orbital of the last 
unpaired nucleon. Parity is related to the orbital quantum number  and is 
given by 1)(P  . 

The relative orbital angular momentum of alpha and nucleon is 1. Spin 
and parity of lowest lying states are ( 3/2 - ) state and ( 1/2 - ) state and shown 
in Fig. (1). 

               
Figure 1. Energy levels of unpaired neutron in  Ηe5

2  system 
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Complex Coordinate Rotation Method 
The method of complex coordinate rotation is used to investigate the 

resonance states. Under this treatment a resonance is considered as an 
extension of the concept of a bound state which is solution to the Schrödinger 
equation with purely outgoing asymptotic belonging to the complex energy. 
The real and imaginary parts of the energy give the position and width of the 
resonance, respectively. Thus complex resonance energy is written as 

2
ΓiEΕ Rres   (1) 

where ER is energy level and Γ is the level width. In the asymptotic region, the 
resonance wave function is described by purely out going radial part as 

rK  i
  r e      Ψ(r)    (2) 

where the wave vector IR iKKK   ( 0KR  and 0K I   ) and satisfies  

2 μ
K 22 . 

Thus r  K r K  ir ) K  -K ( i
  r 

IR IR e ee      (r) Ψ    
      r)(Ksin  ir)(K cos e RR

r KI   (3) 
which shows that the asymptotic radial part is oscillating between 
exponentially growing amplitudes of rK Ie . 

The asymptotic divergence of the resonant wave function has caused 
difficulties in the resonance calculations. This resonance wave function cannot 
be solved by using the bound state type wave function. 

According to complex rotation method, the following transformation 
iθrer   (4) 

where θ is a rotation angle. The complex scaling operator  θÛ  acting on a 
single particle wave function is defined as 
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  Ψ(r)  θU(r) Ψ)(re ΨΨ(r) θ

θ i   (5) 
Let us see the transformed Schrödinger equation under complex rotation, 

Ψ(r) ΕΨ(r) Η(r)   (6) 
)ΕΨ(re)(re)Η(re θ iθ iθ i   (7)

  
    (r) Ψ θÛ ΕΨ(r) θÛ ) Η(re θ i   

        (r)  θ  Û  θ  Û Ε  (r) θ Û )e(r  H  θ  Û -1θ i-1   
    Ψ(r) Ε  Ψ(r) θ Û )(re H θÛ θ i-1   (8) 

By comparing Eq.(6) and (8) 
   θ Û )(re H θÛH(r) θ i-1           

(or)        )r  ( H )(re HθÛ (r) H θÛ θ
θ i-1-1   (9) 

Under this transformation, the energy eigenvalue remains unchanged 
(r)EΨ(r)(r)ΨΗ θθθ   

Then the asymptotic resonance wave function is transformed as 
iθIR er  ) K  iK  ( i

  r θ e  (r)Ψ 
   

     r  θsin    K   θ   cos K  ir  θ   cos    θsin    K   -
   r IRIR e e  
  K         (10) 

and oscillating with amplitude r)cosθKsinθ(K- IRe  . From the above equation, if 
cosθKsinθK IR   (or) 

R
I

K
Ktanθ  , the resonance wave functions becomes 

convergent at the asymptotic region. 
Thus the resonance state can be solved with bound state type wave 

functions. According to the relation of the complex resonance energy and 
wave vector, 
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2
IR

2
IR )iK(K2μiΕΕ    (11) 

If ER >> EI (KR >> KI), the boundary condition for resonance state can be 
expressed as  

 
The rotation parameter θ has an upper limit, 4πθc  . The Gaussian 

basis wave functions are transformed under complex rotation. 
By introducing r΄ as               θ irer   (12) 

θ i  - err   (13) 
Eq. (7) is written as ) er  (  Ψ  Ε) er   (  Ψ  ) er   (  Η θ  iθ  iθ  i   
  ) r  ( Ψ  Ε ) r (    ) r  ( Η   (14) 
The transformed Gaussian basis wave function is 

 
2

jb
r

jjθ e θcΣ(r) Ψ 



  (15) 

(or)                              
2

θ ij e b
r

jj e θc Σ)r( Ψ 



   (16) 

Eq. (14) becomes                                     

   
2

θ ij

2

θ ij e b
r

jj
e b
r

jj e   θc Σ  Εe   θc Σ  ) r ( Η 



 



     (17) 

   
2

θ ij

2

θ ij  e b
r

jj
e b
r

jj e  θc Σ  Εe  θc Σ  (r) Η 







   (18) 

We have to solve the Schrödinger equation which is the same as bound 
state system except the range parameter bj becomes bjeiθ.  

R
I

R
I

2 Ε
Ε~K

Ktan θ   
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The bound states are the same. The positive-energy spectrum of the 

original Hamiltonian H is rotated down by an angle of 2θ into the complex-
energy plane. The resonance states of the eigenvalues 2

ΓiΕΕ Rres   satisfying 
the condition 2θE res  , where ER is the energy and Γ is width of the resonance, 
respectively. Where the bound states that lies on the negative energy axis 
remains unchanged, the resonance states located in the fourth quadrant, after 
the separation from the continuous spectrum, does not vary with θ, the 
continuum along the positive energy axis rotates clockwise by the angle 2θ. If 
we do not apply the complex scaling, the original Schrödinger equation gives 
the continuum spectra, including resonances on the positive energy axis. 
Under complex rotation, the resonance for which 

R
I

k
ktan θ   are separated 

from continuum, and the rotated continuum spectra starting from different 
threshold energies are separately obtained on different 2θ-lines as shown in 
Fig. (2). 
 
 
 
 
 
 
 
 
 
 
Figure 2. A schematic distribution of the eigenvalues of the bound states and 

resonance states. 
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Two-Body Calculation 
We use the Gaussian basis wave function as the total wave function of 

our two-body system which has the following form; 

 
2

θ ij e b
r

jj
1 ecΣrru 



 

                                    (19) 
where cj’s expansion coefficient and bj’s are range parameters. 
The Schrödinger equation is written as 

Ψ ΕΨ Η   (20) 

 

The two body Hamiltonian is 
 rVr

1)(
2μdr

d
2μΗ 2

2
2

22    

where reduce mass ,      
21

21
mm

mmμ 
 

And then we can write as; 
 

ji, jij
ji, jijijij cN  Εc ]V V[Τ   (21) 

 j
N

1j
ij

N

1j
jij cNΕcΗ  
  (22) 

Eq.(22) can be written as 

) C  N..... C  N C  (N Ε C  Η...... C  Η C  Η
.

) C  N..... C  N C  (N Ε C  Η...... C Η C Η
) C  N..... C  N C  (N Ε C  Η...... C  Η C  Η

NNN2N21N1NNN2N21N1

N2N222121N2N222121
N1N212111N1N212111





 

The above N equations can be written as a matrix form as follows; 
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



















































N

2
1

NNN2N1

2N2221
1N1211

N

2
1

NNN2N1

2N2221
1N1211

 C

 C
 C

 N.... N N
 N.... N N
 N.... N N

   Ε
 C

 C
 C

 H.... H H
 H.... H H
 H.... H H

 
                                          CN ECH   
                                             C ECHN 1   
                                                   C ECΑ   

ijN , ijT , ijV   are analytically solved by using standard integral. We solved 
the two body Schrödinger equation to obtain the resonance energies. By 
diagonalization the Hamiltonian matrix elements, we obtained the complex 
energy eigenvalues. 

 

Interaction between Alpha and neutron 
We have employed the α-n potential which is introduced by Kanada et 

al., ( Kanada, 1979 ). The α-N potentials are described in the following parity 
dependent form with the central and spin-orbit terms. Spin-orbit coupling is 
predominant feature. The α-n potential  is expressed in the following Gaussian 
form, 

    N
i

i

i

i
r γs.p

i
rγ.s

i
r βp

i
i

i
r βi

i
in-α s.e Vie Ve VeV(r)V max max 2pi2i2pi

max2i
max 




 


          (23) 

where  is the relative angular momentum between α and N, and Ns  is the spin 
of N. The spin orbit s.

 coupling is calculated by using the following 
equation; 

2
sjs. 222  


                                                 (24) 

2
)1s(s)1()1j(js.  


           (25) 
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The potential strengths and the range parameters are shown in Fig. (3), 
Fig. (4) and described in Table (1).  
Table 1. The size parameters (fm-2) and strength parameters (MeV)                    

of α-n interaction  
i 1 2 3 
βi 0.36 0.90 - 
βip 0.20 0.53 2.5 
γi 0.396 0.52 2.2 
γip 0.396 2.2 - 
Vi -96.3 77.0 - 
Vip 34.0 -85.0 51.0 
Vils -20.0 -16.8 20.0 

Vils,p 6.0 -6.0 - 
 

     
 
 

   Figure 3.  The potential for (α-n) system  in ( J = 1/2- ) state. 
Figure 4. The potential for (α-n) system  in ( J = 3/2- ) state. 

 

Results And Discussion 
Resonance Energies of He5  System 

Our purpose is to investigate the resonance states of α-n system by 
using the complex scaling method. The (α-n) system has rather broad 
resonances but no bound state. The complex-scaled Hamiltonian matrix 
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elements are diagonalized and we obtained the complex energy eigenvalues. 
The number of the basis state is determined to converge the solutions. 

 The complex eigenvalues /2iEE r   the energy level Er and level 
width Γ. From the energy eigenvalue data, we have found that the difference 
between resonance states and continuum states increases with increasing θ. In 
complex scaling method, the continuum states vary with the 2θ dependence. 
This distribution of continuum eigenvalues depends on the choice of the 
number of basic. In our calculation, the optimum set of parameters are 
G1=0.1fm, CG=1.15, N=40. The resonance states for (Jπ =3/2- ) can be seen 
clearly from the continuum states θ=20° to 40°. The energy eigenvalue 
distributions of the 5He (3/2- ) state with θ=20°, θ=30° and θ=40° are shown in 
Fig. (5). The energy eigenvalue distributions of the 5He (1/2- ) state with 
θ=30°, θ=35° and θ=40° are shown in Fig. (6). From our calculation, we 
found that bound states and resonance states are discrete and obtained 
independently of θ. The calculated energies and level widths of  n-αHe5  for 
(Jπ =3/2-) and (Jπ =1/2-) are (0.747, 0.596)MeV and (2.147, 5.533)MeV 
respectively. Resonance energies for (α-n) system are compared with the 
experimental results (D.R.Tilley, 2002) in Table (2). Energy levels diagram 
for each state by comparing with the experimental values are shown in       
Fig. (7). 

     
 
Figure 5. Resonance energy for the 5He ( 3/2 - ) with θ=20°, θ=30°, θ=40° 
Figure 6. Resonance energy for the 5He ( 1/2 - )  with θ=30°, θ=35°, θ=40° 
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Table 2. The energy eigenvalues of He5  system. 

States 
Energy Level, E (MeV) Level Width, Γ (MeV) 

Our 
Results 

Exp: Results 
(D.R.Tilley, 2002) 

Our 
Results 

Exp: Results 
(D.R.Tilley, 2002) 

5He(3/2-) 0.747 0.798±0.008 0.596 0.648±0.006 
5He(1/2-) 2.147 2.068±0.021 5.533 5.570±0.056 

 
 
 
 
 

 
 

 
 
 
 
Figure 7. Energy  level of 5He system in comparison with experimental 

values 
Conclusion 

Studies of resonances are indispensable for understanding the unique 
properties of drip-line nuclei. We have calculated the α+N two body 
calculation for He5  resonance states by using complex rotation method. From 
our calculation, we found that the positions of resonance states in the complex 
energy plane remains almost unchanged with the variation of rotation angle θ. 
Our calculated results for the energies and level widths of He5  system are 
consistent with the experimental results. 
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