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DECOMPOSITION OF COMPLEX VECTOR SPACE Cn 
INTO INVARIANT SUBSPACES  

Myint Myint Maw* 
Abstract  

This paper study the existence of eigenvalue for every linear 
operator on a finite-dimensional complex vector space. In this paper, we 
will discuss although eigenvectors corresponding to distinct eigenvalues are 
linearly independent, they can not span the complex vector space. Then we 
give decomposition of complex vector space Cn into generalized 
eigenspaces and Jordan subspaces.  
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Jordan subspace  
 
1. Eigenvalues and eigenvectors 
 Throughout the paper, V denotes n-dimensional complex vector space. 
 

1.1 Definition. Let A :VV be a linear operator. A subspace MV is called 
invariant for the linear operator A, or A-invariant, if AxM for every vector 
xM.  
Trivial examples of invariant subspaces are {0},V, Ker A = {xV | Ax = 0} 
and  
Im A = {Ax | xV}.  
 

1.2 Definition.  Let A: VV be a linear operator. A number C is called 
an eigenvalue of A if there exists xV such that x 0 and Ax = x. The vector 
x is called an eigenvector of A corresponding to .  
 

1.3 Theorem.  Let A :VV be a linear operator and C. Then the following 
are equivalent:  

(a)  is an eigenvalue of A.  
 (b)  A – I is not injective. 
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 (c) A – I is not surjective.  
 (d) A – I is not invertible.  
Proof.  is an eigenvalue of  A   vV such that v 0 and Av = v.  
    (A – I) v = 0 
    A – I is not injective. 
Thus conditions (a) and (b) are equivalent.  
Clearly conditions (b), (c) and (d) are equivalent.  
 

1.4 Theorem.  Every linear operator on a finite-dimensional complex vector 
space has an eigenvalue.  
Proof. To show that A has an eigenvalvue, choose a non-zero vector vV. We 
consider the n + 1 vectors v, Av, A2v, …,An v. Since the dimension of V is n, v, 
Av, A2v, …,An v are not linearly independent.  
Thus there exist complex numbers a0, a1, …,an, not all zero such that a0v + a1v 
+ … + anAnv = 0.  
Make the a’s the coefficients of a polynomial, by the Fundamental Theorem 
of Linear Algebra which can be written in factored form as  

a0 + a1z + … + anzn = c (z – 1) … (z – m), mn 
wherem is largest positive integer such that am 0, c is a non-zero complex 
number, each j is complex and equation holds for all complex z. We then 
have  
  a0v + aiAv + … + anAnv = 0 
  (a0I + a1A + … + an An)v = 0 
  (c(A – 1I) … (A – mI)) v = 0.  
We know that the composition of injective mappings is injective and v 0. 
Thus A – jI is not injective for at least one j. In other words, A has an 
eigenvalue.  
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1.5 Proposition. Non-zero eigenvectors corresponding to distinct eigenvalues 
of A are linearly independent.  
Proof. Suppose that 1, …,m are distinct eigenvalues of A and v1, …, vm are 
corresponding non-zero eigenvectors. We need to prove that v1, …,vm are 
linearly independent. Suppose that a1, …,am are complex numbers such that 
a1v1 + … + amvm = 0. Apply the linear operator (A – 2I) (A – 3I) … (A – mI) 
to both sides of the equation above,  

((A – 2I) (A – mI) … (A – m I) (a1v1 + … + amvm) = 0.  
Since we have (A – j I) vj = 0,  j = 1,2, …, m and two polynomials in the 
same linear operator are commute, then we have  

((A – 2I) (A – 3I) … (A – mI) (a1v1) = 0.  
But (A – jI) v1= Av1 – j (Iv1) = 1v1 – jv1 = (1 – j)v1 for  j 1.  
Thus a1 (1 – 2) (1 – 3) … (1 – m) v1 = 0. Since ’s are distinct 
eigenvalues and v1 is non-zero eigenvector, we get a1 = 0. In a similar fashion, 
aj = 0 for each j.  
 

1.6 Definition.  Suppose A :VV and C. The eigenspace of A 
corresponding to , denote by E(, A), is defined by E(, A) = Ker (A– I).  
 

1.7 Theorem. Suppose V is finite-dimensional and A: VV. Suppose also that  
1 , …, m are distinct eigenvalues of A. Then E(1, A) + … + E(m, A) is a 
direct sum and dim E(1, A) + … + dim E(m, A)  dim V. 
Proof. We know that the null space of each linear mapping on V is a subspace 
of V. 
Thus E(1, A) + … + E(m, A) is a subspace of V. 
Take any xE(1, A) E(j, A)  for ij.  
So (A– iI)x = 0 and (A– jI) x = 0.  
Ax = i xand Ax = jx  this implies that i x = j x  so  (i– j)x = 0.  
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Since ’s are different, we get x = 0. Thus E(1, A) + … + E(m, A) is a direct 
sum of V.  
Hence dim(E(1, A)+…+E(m, A)) = dim E(1, A) +…+ dim E(m,A)  dim V.  
 

1.8 Remark.  Non-zero eigenvectors corresponding to distinct eigenvalues of 
A need not span V.  
 

1.9 Example. The linear operator A :C2C2defined by A(w, z) = (z, 0).  
 (w, z) (0, 0) and  0 in C,  (w, z)  (z, 0). 
Thus to get A(w, z) =  (w, z),  = 0 is forced, and so 0 is only eigenvalue of 
A. The set of eigenvectors corresponding 0 is {(w, 0) C2) | wC} it is one 
dimensional subspace of C2. Clearly (w, 0) cannot span C2. 
 

2. Generalized Eigenspaces 
2.1 Definition.  Let  be an eigenvalue of a linear operator A : C nC n. A 
chain of vectors x0, x1, …,xk is called Jordan chain of A corresponding to  if 
x0 0 and the following relation hold: 
  Ax0 = x0 
  Ax1 – x1 = x0 
(1)    Ax2 – x2 = x1 
   ⋮ 
  Axk – xk = xk–1 
x0 is an eigenvector of A corresponding to . The vectors x1, …, xk are called 
generalized eigenvectors of A corresponding to the eigenvalue  and 
eigenvector x0.  
Equation 2.1(1) can be written (A–I)x0 = 0,(A – I) x1= x0,…, (A–I)xk = xk–1.  
So (A – I)x0 = 0, (A – I)2x1 = 0, (A – I)3x2 = 0, …, (A – I)k+1xk = 0. Thus 
we way calculate a Jordan chain into the form (A – I)kxk, (A – I)k–1xk, …,   
(A – I) xk, xk.  
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2.2 Definition.  The subspace Ker (A – I) p, integer p 1 is called the 
generalized eigenspace of A corresponding to eigenvalue  of A if Ker                  
(A – I)i= Ker (A – I)p for all integer i>p and is denoted by R (A). So                           
R (A) = Ker (A – I) p is the biggest subspace in (1). Since  pn we also have 
R (A) = {xCn | (A – I)nx = 0} = Ker (A – I)n.  
 

2.3 Proposition.  The generalized eigenspace R (A) contains the vectors from 
any Jordan chain of A corresponding to  and R(A) is A-invariant.  
Proof. Let x0, …,xk be a Jordan chain of A corresponding to . Then  
  (A – I)k+1xk = (A – I)k (A – I) xk 
   = (A – I)kxk–1 = (A – I)k–1xk–2 
   ⋮ 
   = (A – I) x0 
   = 0.  
Hence  xiR (A),  i = 0, …, k.  
If  x Ker (A – I)n, then (A – I)nx = 0.  
Thus (A – I)n (Ax) = A((A – I)nx) = A0 = 0.  
Hence  R (A) = Ker (A – I)n is A-invariant.  
2.4 Lemma.  For any eigenvalue  of A, then (the restriction linear operator of 
A on R (A)), ( )|R AA   has only one eigenvalue .  
Proof. Let   be eigenvalue of ( )|R AA  .  
Then there exists nonzero eigenvector  xR(A) such that  Ax= x. Then  
(A – I) x = x – x = ( – ) x 
(A – I)2x = (A – I) ( – )x = ( – )( – )x = ( – )2x and so on, thus 
we have (A – I)kx = ( – )kx  for each positive integer k. Since  x is 
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generalized eigenvector of A corresponding , for some l, then ( – )l= 0, 
thus we have   = .  
 

2.5 Lemma.  If  A : CnCn be a linear operator, then non zero generalized 
eigenvectors corresponding to distinct eigenvalues of A are linearly 
independent.  
Proof.  Suppose  1, …, m are distinct eigenvalues of  A and v1, …, vm are 
corresponding non zero generalized eigenvectors. Suppose  
(1)   a1v1 + … + am vm = 0  for some scalars  a1, …, am.  
Let  k be the largest non negative integer such that (A – 1I)kv1 0 and                
(A – 1I)kv1 = w. Thus (A – 1I) w = (A – 1I)k+1v1 = 0 and hence Aw = 1w. 
Thus (A – I) w = 1w – w= (1 – )w, C. So (A – I)nw = (1 – )nw, 
C, where n = dim Cn. Apply the linear operator  
 (A – 1I)k (A – 2I)n … (A – mI)n to (1) 
 (A – 1I)k (A – 2I)n … (A – mI)n (a1v1 + … + am vm) = 0 
 a1 (A – 1I)k (A – 2I)n … (A – mI)nv1 = 0 
 a1 (A – 2I)n… (A – m I)nw = 0 
 a1 (1 – 2)n… (1 – m)nw = 0.  
This implies that a1 = 0. In a similar fashion aj = 0 for each  j. Thus  v1, …, vm 
are linearly independent.  
 

2.6 Lemma.  Given a linear operator  A : CnCn with an eigenvalue  , let q 
be a positive integer for which Ker (A - I)q= R(R). Then the subspace Ker (A 
– I)q and Im (A – I)q are direct complements to each other in Cn.  
Proof.  Since dim Ker (A – I)q + dim Im (A – I)q= n, we have only to check 
that  Ker (A – I)q Im (A – I)q = {0}.  
For a contradiction, assume that  x Ker (A – I)q Im (A – I)q, x 0.  
Then  x = (A – I)q y, for some y and (A – I)r x = 0 and (A – I)r–1x 0 for 
some integer r 1. Thus (A – I)q+r y = 0 and (A – I)q+r–1y 0. So Ker               



J. Myanmar Acad. Arts Sci. 2018 Vol. XVI. No.3 99 

(A – I)q+r Ker (A – I)q+r–1. This contradicts to definition of generalized 
eigenspace.  
 

2.7 Theorem.  Let  1, …, r be all the different eigenvalues of a linear 
operator A : CnCn. Then Cn decomposes into the direct sum 

1 ( ) ( ).r
nC R A R A     

Proof.  For n = 1. let  be an eigenvalue of A, then there exists  v 0  in Cn 
such that Av = v. Since {v} is a basic of Cn, for each  nx C (A – I)x                                           
= (A– I)v  for some C. So we have  (A – I)x = v – v = 0. Then 
xR (A). Thus ( ).nC R A  
Let n> 1. Assume that the result holds for dimensions k = 1, 2, …, n – 1.  
Consider the eigenvalue 1.  
Cn = Ker (A – 1I)n + Im (A – 1I)n = 1 ( ) .R A U   We know that Im (A – 1I)n 
= U is A-invariant. Since 1 ( ) 0R A  , we have dim U<n. By Proposition 2.3, 
there does not exist generalized eigenvectors of |UA  corresponding to the 
eigenvalue 1. Thus each eigenvalue of |UA corresponding to the eigenvalue 
1. Thus each eigenvalue of |UA  is in {2, …,r}. By induction hypothesis 

2 ( | ) ( | ).rU UU R A R A     Thus 1 2( ) ( | ) ( | ).r
n U UC R A R A R A       

So we show that ( ) ( | )k k UR A R A   for k = 2, …,m. Take a fixed integer         
k {2, …, m} and clearly ( | ) ( ).k kUR A R A   Assume ( | ) ( ).k kUR A R A   
Then there exists ( )kv R A  but ( | ).k Uv R A  So we get ( | )j Uv R A  for 
some  jk and hence  ( ).jv R A  Thus ( ) ( ).k jv R A R A    This contradicts 
to lemma 2.5. So ( ) ( | ).k k UR A R A   Thus 1 ( ) ( ).r

nC R A R A     
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1 ( )R A

2 ( )R A

1 ( )R A

2 ( )R A

3 ( )R A 3 ( )R A

Figure 1 
 
3.  Jordan Subspaces 
3.1 Definition. An A-invariant subspace M is called a Jordan subspace 
corresponding the eigenvalue  0  of A if M is spanned by the vectors of some 
Jordan chain of A corresponding to 0.  
 

3.2 Proposition. Let A : CnCn be a linear operator. Let x0, x1, …, xk be a 
Jordan chain of a linear operator A corresponding to 0. Then the subspace     
M = Span {x0, …, xk} is A-variant.  
Proof.  We have Ax0 = 0x0M where 0 is the eigenvalue of A and for  i = 1, 
…, k, Axi = 0xi + xi–1M. Hence M is A-invariant.  
 
3.3 Theorem. Let  A : CnCn be a linear operator. Then there exists a 
direct sum decomposition 
(1)   Cn = M1 + … + Mp 
where Mi is a Jordan subspace of A corresponding to an eigenvalue                           
i (1, …, p are not necessarily different).  
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Proof.  Assume A has only one eigenvalue 0, (possibly with there are more 
one eigenvalue, all equal to 0).  
Let Yj = Ker (A – 0I)j,  j = 1, 2, …, m, where m is chosen Ym = 0 ( )R A  and 

01 ( ).mY R A   So Y1Y2 … Ym. Let ( )(1) , , mtm mx x  is a basis of Ym modulo 
Ym–1. So ( )(1) , , mtm mx x  are linearly independent in set Ym such that  
(2)   ( )(1)1 Span { , , }mtm m m mY x x Y    (the sum is here direct) 
Claim that the mtm vectors ( )(1)0 0( ) , , ( ) , 0, , 1mtk km mA I x A I x k m       
are linearly independent. Let  
(3)  1 ( )0

0 1
( ) 0,mtm k iik m ik

k i
A I x C  

 
   . 

Apply (A – 0I)m–1 and use the property ( )0( ) 0,m imA I x   for  i = 1, …, tm.  

Thus 1 ( )0 0
1

( ) 0.mtm ii m
i

A I x 


         So ( )0 1
1

.mt ii m m
i

x Y 
  

By 3.3(2), ( ) (1)0 1
1

Span { , , }m
m

t tii m m m m
i

x Y x x 
    and so 10 0 0.mt     

Apply (A – 0I)m–2 to 3.3(3) we show similarly that  11 1 0mt     and so 
on.  
We put  M1 = Span (1)0{( ) , 0, , 1}k mA I x k m    
  M2 = Span (2)0{( ) , 0, , 1}k mA I x k m    
   ⋮ 
  mtM  = Span ( )0{( ) , 0, , 1}.mtk mA I x k m     
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Since {0}i jM M  for  ij, then the sum M1 + M2 + … + mtM is direct. Now 
consider the linear independent vectors ( ) ( )01 ( ) ,i immx A I x   i = 1, …,tm. 
Claim that  
(4)   ( )(1) (2)2 1 1 1 Span { , , , } {0}.mtm m m mY x x x      

Let ( ) 21
1

, .mt ii m im
i

x Y C 
   Apply (A – 0I)m–2 to the left-hand side, we get 

2 ( )0 0
1

( ) ( ) 0,mtm ii m
i

A I A I x  


    So 1 ( )0
1

( ) 0,mtm ii m
i

A I x 


   which 
implies 1 0.mt     So the equation 3.3(4) follows. Assume that 

( )(1)2 11 1Span { , , } .mtm mm mY x x Y     Then there exist vectors 
1( 1) ( ) 11 1, ,m m mt t t mm mx x Y      such that 1( )1 1{ }m mt tim ix    is linearly independent 

and  
(5)   1( )(1)2 11 1Span { , , } .m mt tm mm mY x x Y     
Applying previous argument to 3.3(5) as with 3.3(2), we fine that the vectors 

1( )(1)0 01 1( ) , ,( ) , 0, , 2m mt tk km mA I x A I x k m         are linearly independent. 
Now let  1mtM  = ( 1)0 1Span {( ) , 0, , 2}mtk mA I x k m     
  ⋮ 
 1m mt tM  = 1( )0 1Span {( ) , 0, , 2}m mt tk mA I x k m    . 
If ( )(1)2 11 1Span{ , , }mtm mm mY x x Y    , then tm-1 = 0.  
At the next step put ( ) ( )0 12 1( ) , 1, ,i i m mm mx A I x i t t       and show similarly 
that ( )3 12Span{ , 1, , } {0}.im m mmY x i t t      
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Assume that that ( )3 1 22Span{ , 1, , } ,im m m mmY x i t t Y       then there exist 
vectors ( ) 2 1 1 22 , 1, ,i m m m m m mmx Y i t t t t t           such that 

( ) 1 22 , 1, ,i m m mmx i t t t      are linearly independent and 
( )3 1 2 22Span { , 1, , } .im m m m mmY x i t t t Y         

We continue this process of construction of Mi, i = 1, …,p where 
1 1.m mp t t t     

The construction shows that each Mi is Jordan subspace of A and M1 + … + 
Mp is a direct sum. Also 01 ( ) .npM M R A C     

1R (A)

3R (A)
3R (A)

1R (A)

2R (A)2R (A)

 Figure. 2 
3.4 Example.  Let us consider the matrix 

2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 1
0 0 0 0 2

         

A  

 5(2 )  A I   
 = 2, 2, 2, 2, 2 are eigenvalues of A. 
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1 1 1 2 4 1 2( 2 ) { | ,   Y Ker A I e e    are scalars} 

22 1 1 2 2 3 4 4 5 1 2 3 4( 2 ) { | , , ,     Y Ker A I e e e e        are scalars} 
33 1 1 2 2 3 3 4 4 5 5 1 2 3 4 5( 2 ) { | , ,        Y Ker A I e e e e e           are scalars} 

 51 2 3 2 ( )   Y Y Y R A C  
e3 is a basis of Y3 modulo Y2 such that 
 Y2 + span {e3} = Y3 
Jordan subspace 21 3 3 3 1 2 3Span{ 2 ) , ( 2 ) , } { , , }   M A I e A I e e Span e e e  
 3 2 2( 2 )  A I e e Y  
 1 3 2Span{( 2 ) }  Y A I e Y  
 5 2 e Y such that {e2 , e5} is linearly independent set. 
Jordan subspace M2= Span 5 5 4 5{( 2 ) , } { , } A I e e Span e e  
 51 2 2 3( )   M M R A C Y  

 
Figure. 3 
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0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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