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Abstract 

Reaction cross section of carbon isotopes for proton scattering is computed with the wide incident 

energy region. Calculations are based on eikonal approximation which is a high energy (small 

scattering angle) that depends on the nucleon nucleus (NA) optical potential. The proton-carbon 

optical potential is obtained by a folding integral of the nucleon nucleon (NN) transition amplitude 

and matter density of carbon. Analytical formulas of optical potential are used to present in 

position-space representation for carbon isotope by using harmonic well nuclear densities(A<20). 

The eikonal phase function is presented in the momentum-space representation which is obtained 

from computing the fourier transform of the position-space optical potential in order to compare 

each other. 
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Introduction 

In this present work, proton-carbon isotope scattering will be studied in order to predict 

the size of carbon isotope in the frame work of eikonal approximation. The scattering of particles 

from nuclei has provided invaluable information on charge, matter densities distribution and 

root-mean-square radius of stable nuclei near the stability line. Proton elastic scattering is 

expected to be the most suitable experiment besides electron scattering in order to obtain such 

information on the stable nuclei. For scattering problem of composite particle, the exact solution 

of Schrodinger is very difficult. So the appropriate approximation is indispensable. In this study, 

the eikonal approximation is used to calculate the differential cross section and reaction cross 

section of proton carbon scattering. It is well-suited for the prediction of cross sections for 

projectile with kinetic energies in the laboratory frame greater than 150 MeV/n. The differential 

cross section is computed from the absolute square of scattering amplitude that is obtained by 

integrating the eikonal phase function. The eikonal phase function is related to the optical 

potential which depends on NN transition amplitude and density profile of carbon. In this study, 

nuclei are composite particles whose fundamental constituents are nucleons (protons and 

neutrons). The quark structure of the nucleons is not considered. It is assumed that the inner 

structure of nucleon will be probed at higher energies, and these effects are considered to be 

included in the NN transition amplitude. The NN transition amplitude is a function of total cross 

section, slope parameter and real to imaginary ratio. Electron scattering experiments are used to 

estimate the charge density of nuclei. Harmonic well densities are used for light nuclei. Nuclear 

matter density is obtained from dividing the nuclear charge density by the Gausian charge 

distribution of the proton. In the position-space representation, the optical potential is a six 

dimensional nuclear matter densities and the NN transition amplitude. In momentum space 

representation, it is the product of the matter densities and NN transition amplitudes as a function 

of momentum transfer. 
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Theory 

Eikonal Approximation 

The time independent Schrodinger equation is given by  

                                    || EH       (1) 

    VHH 0  

     H = Halmiltonian, V =potential energy operator and 0H  = kinetic energy operator         

         ||)( 0 EVH  

       ||
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To avoid the singular nature of the operator  
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 , i  is added into equation (2) 
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The solution of above equation is given by 
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This is known as Lippmann-Schwinger equation 

Where, |  is the solution of free particle Schrödinger equation,  is 

outgoing (incoming) wave function  

By using the completeness relation, we obtained 
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Eikonal approximation is useful approximation techniques when the de Broglie wavelength             

λ = h/p of the incident particle is sufficiently short compared with the distance in which the 

potential varies appreciably. If the potential varies smoothly and has a range “a”, this short 

wavelength condition is equivalent to the requirement that      ka >>1. 

Let„s consider high energy, non-relativistic potential and assume that ka >> 1 (short 

wavelength ) and V0 /E<<1 (high energy)   

We start the Lippmann Schwinger equation 
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 Where, the Green‟s function is given by 
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When the potential varies slowly over the scale of the incident wavelength, the full wave function

k , is given by 
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Where, )(r


 is slowly varying function when ka is large. 

The eikonal scattering wave function is obtained by  
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Calculation of eikonal scattering amplitude 

 Eikonal scattering wave function is given by 
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The scattering amplitude and the scattered wave function is related by  
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Where,    
fi kk
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  is wave vector transfer 

For cylindrical coordinate system,   zdbdrd
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 parallel to the bisector of the scattering angle .  
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Now eikonal scattering amplitude becomes as below 
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Where, eikonal phase shift function   is   
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The ordinary Bessel Function J0 is given by 
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where, b is the impact parameter, k is the relative momentum of the projectile-target system in 

the center of mass (CM) frame. 
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At lab
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     where, 
p T

p T

A A

A A

m m

m m
, Tlab is the kinetic energy of the projectile in laboratory frame. 

The elastic differential cross section is computed from the absolute square of the scattering 

amplitude. 
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Total elastic cross section is obtained by integrating over the solid angle  

 

      (17) 

The scattering amplitude is satisfies the optical theorem, so the total cross section is given by  

 (18) 

 

The reaction cross section is obtained by  

           (19) 

 

 

 Optical Potential 

Differential cross sections are function of eikonal phase function which depends on the 

optical potential, as shown in equation (13). For Nucleus-Nucleus (AA) scattering, the optical 

potential can be expressed as [9] 

         ( ) ( ) ( ) ( )
NNp T NN p P T T T NNU r A A t r r r dr dr      (20) 

Where, A is the number of nucleon, p is projectile, T represent the target, NNt is NN transition 

amplitude and is nuclear matter density.  The vectors used for the AA optical potential are 

illustrated in figure (1). The distance from the center of the projectile nucleus to a nucleon in the 

projectile can be expressed as   rp = r + R = r + rT + rNN , which , when substituted into (20), 

   (21)( ) ( ) ( ) ( )
NNp T NN p T NN T T T NNU r A A t r r r r r dr dr

 

Where, 
2 2r b z  in the cylindrical coordinate system. 

 

 The eikonal phase function can be obtained by integrating the optical potential in the 

position-space representation. In this section, it is expressed as a function of momentum transfer 

in order to reduce the number of integration dimensions. 

Nucleon-Nucleon Transition Amplitude and Nuclear Matter Density 

 In present work, differential cross section is calculated with the eikonal approximation 

using the momentum-space representation of the optical potential, which depends on the 

nucleon-nucleon (NN) transition amplitude and nuclear matter density. The harmonic-well 

nuclear matters density is given by [9] 
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The Fourier transform of the harmonic-well nuclear matters density is given by 
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 The simplest form of NN transition amplitude is expressed as follow 

             

                                            (24)                                                                                                           

where, e is the kinetic energy of two nucleon center of momentum system, B(e) is the slope 

parameter of pp(pn) elastic scattering cross section, σ(e) is the pp(pn) cross section and ( )e  is 

the real to imaginary ratio of the pp(nn) cross section. The input parameters of NN transition 

amplitude are displayed in table (1). The Fourier transform of NN Transition amplitude is given 

by 

 

  (25) 

where is Planck‟s constant, μ is the reduced mass of the NN system and k is the relative 

momentum in the CM frame. 

For the case of Nucloen-Nucleus (N-A) collision, optical Potential in position space is computed 

by using harmonic nuclear matter density and NN transition amplitude. 

 

where 

 

 

 

 

 

 

Optical Potential in momentum space is obtained with the help of fourier transforms of the NN 

transition amplitude and nuclear matter density. 
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 Figure 1. Illustration of vectors used for the AA optical potential. rNN is the vector 

between a nucleon in the projectile and a nucleon in the target; rp is the vector that extends from 

the center of projectile to a nucleon in the projectile; rT is the vector between the center of the 

target nucleus to a nucleon in the target; r is the relative distance between the centers of the 

projectile and target nuclei; R = r + rT is the from the center of projectile to a nucleon in the 

target B. 

Table 1  Parameter of NN transition amplitude 

E(MeV) σ( mb) κ  B (fm
2
)  

30 19.6 0.87 0.685 

40 14.4 0.9105 0.462 

50 10.4 0.94 0.390 

60 9.15 1.173 0.376 

70 8.01 1.27 0.354 

80 6.79 1.324 0.326 

100 5.51 1.37 0.281 

160 4.17 1.183 0.173 

200 3.405 0.961 0.126 

300 3.06 0.476 0.074 

425 3.01 0.36 0.741 

550 3.47 0.04 0.098 

650 3.94 -0.19 0.13 

800 4.255 -0.07 0.153 

1000 4.52 -00272 0.172 
 

Result and Discussion 

The differential cross section for proton- carbon isotopes scattering (
12,13,14

C) have been 

calculated by using optical potential. The optical potential depends on parameterization of the 

harmonic well nuclear matter density and NN transition amplitude. The harmonic well nuclear 

density parameters used in equation (22)-(23) for carbon isotopes are a=1.67 ϒ= 1.607 (
12

C), 

a=1.64 ϒ= 1.432 (
13

C) and a=1.671 ϒ= 1.26 (
14

C). The energy dependent parameters of NN 

transition amplitude are displayed in table 1. In figure 2,3 and 4, the eikonal (position space)  

refers to the numerical evaluation of the optical potential  equation (20), via Gaussian Quadrature 

Method (six-dimensional integral). Equations (13) and (15) were integrated numerically using 

Gaussian Quadrature in order to obtain the differential cross section for proton- carbon Isotope. 

But in eikonal (momentum space) the numerical calculation only required phase shift function 

equation (13) (one-dimensional integral). So the momentum space eikonal phase shift function 
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was then used directly in equation (15). The calculated differential cross section of carbon 

isotopes which is various incident energies are shown in figure 2 to 4. That figures show the 

differential cross section predicted with position space calculation and momentum space 

calculation agree with experimental data. And also note that position space and momentum space 

results are good agreement with each other. Comparison of reaction cross section between results 

which is obtained from the theoretical and experimental calculation is shown in figure 5 in the 

case of proton carbon scattering. The red dot line represents the currently eikonal calculation. 

The solid yellow line and solid green line are results from other theoretical calculations of and. 

The solid black circles are experimental data taken from. It was found that the calculated reaction 

cross section for p-carbon 
12

C reaction in eikonal approximation agrees with experimental data as 

well as other theoretical calculations. Figure 6 shows the reaction cross section for p- 
13,14

C 

reaction with respect to energy. According to figure 5 and 6, the reaction cross section of proton 

carbon isotope increases with increasing mass number of carbon isotope.   
                                 

     

(a) Result for  250MeV                                    (b) Result for 300MeV 

 

(c) Result for 800MeV 

Figure 2 Differential cross section for Carbon 
12

C target incident on proton at  

(a) 250MeV, (b) 300Mev and (c) 800MeV.  Color lines are p-space and R-space 

eikonal calculation. Experimental data 
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(d)Result for 200MeV 

 

(e) Result for 800MeV 

Figure 3 Differential cross section for p-carbon 
13

C scattering at (d) 200MeV and (e) 800MeV. 

Experimental data are taken from Ref [4]. 
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Figure 4 Comparison of numerical results (p-space and R-space) with experimental    data [4] for 

P-Carbon 
14

C scattering 

 

Figure  5  Comparison  study of reaction cross section of P-Carbon 
12

C scattering as a function 

of energy  
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Figure 6  Comparison of reaction cross section for P- Carbon 
13

C (upper ) & 
14

C(lower) 

scattering between present work and other theoretical results 

Conclusion 

The differential cross section of proton carbon scattering is predicted by using NN optical 

potential. It is obtained by computing a six- dimensional integral over the nuclear matter 

densities of the target and NN transition amplitude. Consequently, numerical calculation of 

optical potential is inefficient. According to numerical calculation, the eikonal phase function can 

be written as a one-dimensional integral by expressing the optical potential as a function of 

momentum transfer, thereby greatly increasing the efficiency of the numerical evaluation of cross 

section using eikonal approximation.  Moreover, NA optical potential were obtained with 

harmonic well nuclear matter densities, which are suitable for light nuclei (A<20). The formulas 

were used to predict the elastic differential cross sections for proton-light nuclei reactions. The 

results generated from the optical potential were verified with numerical integration, and it was 

fond that elastic differential cross section are in good agreement with experimental data 

displayed in figure 2,3 and 4. The momentum-space formulation of the eikonal phase function is 

used to evaluate the differentisl cross section of proton carbon reaction which utilizes target 

nuclear matter density parameterization. It was found that the momentum-space phase function 

agrees exactly with the eikonal approximation computed in position-space and the results of both 

calculations are in good agreement with experimental data. In present work, the reaction cross 

sections for proton-elastic scattering from carbon isotopes of A=12-14 calculated in large energy 

region of 100-1000MeV. The results obtained from eikonal approximation with optical potential 

compares with other theoretical results as well as experimental results. Their behaviors of 

reaction cross section with respect to energy are very similar to each other. In figure 5 and 6, the 

eikonal approximation gives significantly large reaction cross section in energies less than 

200MeV, showing minimum values at around 300-425 and after that slightly increasing with 

increasing energies. This effect is due to attribution of NN transition of amplitudes. The bigger 

reaction cross section of proton carbon isotope, the more increase mass number of isotope is due 

to the more present of nucleon inside the nucleus and the interaction between projectile and 

target becomes snowballing.  
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